TATION PAGE e

D-A e
nnm ===

:!7’!’ ES“‘S 90 1 haur por reapones, inckuiing the ime 1o eviewing insinuctions, searhing eceting daia soures gashenng

this burden estimate er any sther £apedt of this esliection of intwmation,
and Reponts, 1218 Jotlerson Davis Highway, Sulte 1204, hir.:‘?

a [T

-

94032581.11346, AVF: 94ddc500 2A

DDC-I, DACS Sun SPARC/SunOS to 680x0 Bare Ada Cross Compiler /

System (BASICJMO DE), Version 4.6.9

National Institute of Standards and Technology
Gaithersburg, Maryland

7. PERFORIMING ORGANIZATION NAME(S) AND

Ha¥§8?%; }ggfi&g&ﬁ xssgtandards and Technology
Gaithersburg, Maryland 20899

94-15728
Qllﬂ!llllllllllllll&

USA - \\y
3) Y (S) 10. BFUNSURING/MONITORING
Ada Joint Program Office AGENCY
The Pentagon, Rm 3E118
Washington, DC 20301-3080
11. SUPPLEMENTARY
1 I AVAILABIL 120. DISTRIBUTION

Approyed for Public Release; - distribution unlimited

13. imum

Target: Lynwood j435TU (68030) (bare machine)

Host: Sun SPARCstation IPX (under SunOS, Release 4.1.1)

DTIC

ELECTE
MAY 2 6 1994

F

14, SUBJECT 15. NUMBER OF
Ada programming lidnguage, Ada Compler Validation Summary Report, A -
gﬂgygm Y3l angp ém; Val. Testing, Ada Val. Office, Ada Val. ReciTlCy
18. 9. 20, LITATION OF
ca;uluthntnu < CLASSIFICATION
UNCLASSIFED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIEED
NEN Prescribed by ANS|

94 5 295 0 1 Qe quavry mereceen

AVF Control Number: NIST94DDC500 2A 1.11

DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number 940325S51.11346

DDC-I

DACS Sun SPARC/Sun0OS to 680x0 Bare Ada
Cross Compiler System (BASIC MODE), Version 4.6.9

Sun SPARCstation IPX =>

Lynwood j435TU (68030) (Bare Machine)

Prepared By:

Software Standards Validation Group

Computer Systems Laboratory

National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899
UCSOA.

Accesion For

NTIS CRA&|
DTiC 7TAB
Unaanounce a
Justification
By .
Dist.ibution |
Availabifity Coles
e s
Oist Specal

A]

AVF Control Number: NIST94DDCS00_2A 1.11

Certificate Information

The following Ada implementation was tested and determined to pass AcCvC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/SunOS to 680x0 Bare Ada

Host Computer System:

Cross Compiler System (BASIC_MODE),
Version 4.6.9

Sun SPARCstation IPX running under Sunos,
Release 4.1.1

Target Computer Systemnm: Lynwood j435TU (68030) (Bare Machine)

See section 3.1 for any additional information about the testing

environment.

As a result of this validation effort, Validation Certificate
940325S1.11346 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Mr. L. Arnold
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)
National Institute of Standards and Technology

Building 225, Room A266

Gaithersburg, Maryland 20899

Englneering Division

U.8.A.

- o
‘ﬁi;:/ioint Program Office
David R. Basel

Deputy Director,

Ingtitute for Defense Analyses Ada Joint Program Office

Alexandria VA 22311

Defense Information Systems Agency,
Center for Information Management
Washington DC 20301
U.S.A.

NIST94DDCS00_2A 1.11
DECLARATION OF CONFORMANCE
The following declaration of conformance was supplied by the customer.
Customer: DDC-I
Certificate Awardee: DDC-I
Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Standards Validation Group

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.
ACVC Version: 1.11
Ada Implementation:
Compiler Name and Version: DACS Sun SPARC/SunOS to 680x0 Bare Ada Cross Compiler
System (BASIC MODE), Version 4.6.9
Host Computer System: Sun SPARCstation IPX running under SunOS, Release
4.1.1
Target Computer System: Lynwood j435TU (68030) (Bare Machine)

Declaration:

I the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-181S5A ISO 8652-1987 in the implementation listed

above.
AN/ e
[l T 4l e P ¢
Customer Signature Date
Company DDC-I
Title
,,Zq;« AH flere /4-c3-2{
Cestificat€ Awardee Signature Date
Company DDC-I
Title

TABLE OF CONTENTS

CHAPTER l.cccccccocsceccoscncssasosecosscccccasssonsccsncsnanss 1-1
INTRODUCTION. . cccececcccccsossccecscoscscscsccccsccscscsccsssel=l
1.1 USE OF THIS VALIDATION SUMMARY REPORT.:.c¢c¢cs0e0s001-1

102 REFERENCES--.-.......--.........................1'2

1.3 ACVC TEST CLASSES . ccveccscccscssonsscsccscnscsossscacl=2

1.4 DEFINITION OF TERMS..c.ccccccccocccscscccsccssacel=3

CHAPTER 2.0000.-....-o..oooo-o-ooo.o-o.ooooo.-000-00000001-2'1
IMPLEMENTATION DEPENDENCIES..cccccccocccccccscsccscssssccscce=l
2.1 WITHDRAWN TESTS..Q...........Q..Q.....‘......0..2-1

2.2 INAPPLICABLE TESTS..cccoccccccccccccccsssscccsscl2=l

2.3 TEST MODIFICATIONS...cccccescoccccscccsscscccscceel=3

CHAPTER 30o.oooocooooo-oooooooooootu.oo-00010-00000000000003-1
PROCESSING INFORMATION...cceescecccccccsccccccccssssssseald—l

. 3.1 TESTING ENVIRONMENT..sccccocssscccecscsccsccscccscccseld=l
3.2 SUMMARY OF TEST RESULTS.:ccccccccccccccsscscscseld=l

3.3 TEST EXECUTION. . ccccovccoscccscscccscscccsaccsocsasald=2

APPENDIX A..-..IQQOO00-o'.o.o.....oo..........uo..n.c.co...A-l
mCRO PARAMETERS.Q..Q.O.Q...-.Q.O.‘o..'o....o..OOCQOQOOQA-I

APPENDIX B.........c...ooQGQQOOOOOOOCQIOOGOCCCC'0...OOOOCCDB-l
COMPIIATION SYSTEM oonNs ® © 6 9 5 0 000 0O E00 S S E eSS SE L OPIOEEDNPOIOOE B-l
LINI(ER OPTIONS ® 5 © 6 6 0 0 OG0 OGO O VYT O SO OCOE OSSOSO O OO ORTECEOEOEOSICOCOIOEERS B-z

APPENDIX c-'o..o.o.oo.-.....Qnoo..olooooo-....ooocoonooooooc-l
APPENDIX F OF THE Ada STANDARD.OOOO.I..OI'Q.........l...c-l

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83)
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92)]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UGS89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT
Consistent with the national laws of the originating country, the

Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance

.with the "Freedom of Information Act" (5 U.S.C. #552). The results

of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springfield, Virginia 22161

U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria, Virginia 22311-1772

U.S.A.

1.2 REFERENCES

(Ada83]

:
i

W BNCE Manua D 1€ et P NG
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-~1

B - AU

987.

(Pro92) Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UGs9) Ada cCompiler Validation cCapability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89)).

In order to pass an ACVC an Ada implementation must process each

test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability (AcCVC)

Ada Implementation

Ada Joint Program
Office (AJPO)

Ada Validation
Facility (AVF)

Ada Validation
Organization (AVO)

Compliance of an
Ada Implementation

The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada

implementations, Validation consisting of
the test suite, the support programs, the
ACVC Capability User's Guide and the

template for the validation summary (ACVC)
report.

An Ada compiler with its host computer
system and its target computer system.

The part of the certification body which
provides policy and guidance for the Ada
certification Office system.

The part of the certification body which

carries out the procedures required to
establish the compliance of an Ada
implementation.

The part of the certification body that
provides technical guidance for operations
of the Ada certification system.

The abilitv of the implementation to pass an
ACVC version.

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer
Systen

Inapplicable Test

ISO

Operating System

Target Computer
System

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand~-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process, or
service of all requirements specified.

An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring
that conformity is realized or attainable on
the Ada implementation for which validation
status is realized.

A computer system where Ada source programs
are transformed into executable form.

A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

International Organization for
Standardization.

The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
IRM take the form "“<section>.<subsection>:
<paragraph>."

Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

A computer system where the executable form
of Ada programs are executed.

1-4

Validated ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn Test

The compiler of a validated Ada
implementation.

An Ada implementation that has Dbeen
validated successfully either by AVF testing
or by registration [Pro92].

The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54BO2A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CCl223A BC1226A CCl226B BC3009B BD1B02B BD1BO6A
AD1BOSA BD2A0O2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CDS005B CDA201E CE21071 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated:
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..Z (15 tests)

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

The following 20 tests check for the predefined type LONG_INTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C Cc45632C B52004D
CS55BO7A B55B09C B86001W c86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT_INTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE_OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINE_OVERFLOWS is TRUE.

C4A013B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type:
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this 1level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

2-2

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not

support such sizes.

CD2A84A,

CD2ABA4E,

CD2A84I..J (2 tests),
clauses to specify non-default sizes for access types;

implementation does not support such sizes.

and CD2A840 use length
this

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external

files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103a CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110Aa
CE3111A..B (2) CE3111D..E {(2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE340SF CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)
CE2103A, CE2103B, and CE3107A use an illegal file name in an

attempt to create a file and expect NAME ERROR to be raised; this
implementation does not support external files and so raises
USE_ERROR. (See section 2.3.)

2-3

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 72 tests.
The following tests were split into two or more tests because this

implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A
B35101A
B38009B
B61001R
B83EO1D
B91002C
B91002J
B95077A
BC1109D

B26001A
B37106A
B55A01A
B61001W
B83EO1E
B91002D
B91002K
B97103E
BC1202A

B26002A
B37301B
B61001C
B67001H
B85001D
B91002E
B91002L
B97104G
BC1202F

B26005SA
B37302A
B61001F
B83A07A
B85008D
B91002F
B95030A
BA100O1A
BC1202G

B28003A
B38003A
B61001H
B83A07B
B91001A
B91002G
B95061A
BA1101B
BE2210A

B29001A
B38003B
B61001I
B83A07C
B91002A
B91002H
B95061F
BC1109A
BE2413A

B33301B
B38009A
B61001M
B83EO1C
B91002B
B91002I
B95061G
BC1109C

C83030C and C86007A were graded passed by Test Modification as
directed by the AvoO. These tests were modified by inserting
“"PRAGMA ELABORATE (REPORT):" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAM_ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CD2A83A was graded passed by Test Modification as directed by the
AVO. This test uses a length clause to specify the collection size
for an access type whose designated type is STRING; eight

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada impler-: tation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and £, below).

3-1

a) Total Number of Applicable Tests 3542

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 524
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests o

f) Total Number of Inapplicable Tests 524 (ct+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f’

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-I
Ada downloader runs on the Sun SPARCstation IPX and is used for
downloading the executable images to the target Lynwood 3j435TU
(68030) (Bare Machine) and to capture the results. The DDC-I Debug
Monitor runs on the target Lynwood j435TU (68030) (Bare Machine)
and provides communication interface between the host debugger and
the executing target Lynwood j435TU (68030) (Bare Machine). The
two processes communicate via ethernet to download and via RS-232
to upload.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-nowarning -list

The linker options invoked explicitly for validation testing during
this test were:

al -cpu 68030
-fpu 68882
-ram_base 0x1100000
-ram 0x1000000, Ox3fffff

3-2

-main stack_size=0x100000
-tch 30
-uce ada_lynwood.slb

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the wmaximum input-line 1lengtl,, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

. Macro Parameter Macro Value
$MAX IN_LEN 126 -- Value of V
$BIG_ID1 (1..V=1 => ‘A" V => '1°")
$BIG_ID2 (1..V=1 => ‘A" V => 121)
$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V=1=-V/2 => ';A!')
$BIG_ID4 (1..V/2 => 'A') & '4' & (1..V-1-V/2 => 'A')
$BIG_INT LIT (1..V=3 => 10') & "298"
$BIG_REAL LIT (1..V=5 => *0') & "690.0"
$BIG_STRING1 teNe g (1..V/2 => 'A') & tnme
$BIG_STRING2 eet & (1..V=1-V/2 => 'A') & '1' & ‘'nm
$BLANKS (1..V=20 => ' ')

$MAX LEN_INT BASED LITERAL
"2Tn & (1..V-5 => '0') & "11:"

$SMAX LEN REAL BASED_ LITERAL
"16T" & (1..V=7 => '0') & "F.E:"

$MAX STRING_LITERAL '""' & (1..V-2 => 'A') §& 'wm

The following table contains the values for the remaining
macro parameters.

FORM_STRING2

Macro Parameter Macro Value
ACC_SIZE : 32
ALIGNMENT : 4
COUNT_LAST : 2_147_483_647
DEFAULT ' MEM_SIZE : 2¥14E32
DBFAUUT STOR _UNIT : 8
DERAUUT SYS_] NAME : DACS_680x0
DEBEA_DOC : 2#1.0#E-31
ENTRY_ADDRESS : FCNDECL.ENTRY.ADDRESS
ENTRY_ADDRESS1 ¢ FCNDECL.ENTRY.ADDRESS1
ENTRY_ADDRESS2 ¢ FCNDECL.ENTRY.ADDRESS2
FIBLD_ LAST : 35
FILE TERMINATOR L
FIXED NAME : NO_SUCH_TYPE
FLOAT NAME : NO_SUCH_TYPE
FORM STRING HILL

T .

CONNOT_RESTRICT FILE CAPACITY"

GREATER_THAN_DURATION 7100000.0
GREATER_THAN_DURATION_ BASE_LAST 200000.0
GREATER_THAN FLOAT BASE_ LAST 16#1.04E+32

GREATER THAN FLOAT . SAFE LARGE
GREATER ' THAN SHORT FLOAT SAFE_LARGE
HIGH . PRIORITY

ILLEGAL EXTERNAL FILE NAME1l
ILLEGAL EXTERNAL FILE NAME2
INAPPROPRIATE LINE LENGTH
INAPPROPRIATE PAGE LENGTH

INCLUDE PRAGMAI

1645.FFFF_FO#E+31
164#5.FFFF_FO4E+31

24
/NODIRECTORY1/FILENAME1
/NODIRECTORY1/FILENAME?2
-1

-1

06 60 00 00 S0 40 00 09 00 e ..

PRAGMA INCLUDE (“A28006D1.ADA"™)
INCIUDE_PRAGMA2 :
PRAGMA INCLUDE ("“B280O0O6E1.ADA")

INTEGER_FIRST : -2147483648
INTEGER_LAST : 2147483647
INTEGER _LAST PLUS_1 : 2147483648
INTERFACE_LANGUAGE : AS
LESS_THAN_DURATION : =75000.0
LESS_THAN_DURATION BASE FIRST : -131073.0
LINE_TERMINATOR LI
LOW_PRIORITY : 1

HACHINE CODE_STATEMENT
TAA INSTR'(AA EXIT_SUBPRGRM,0,0,0,AA_INSTR_INTG'FIRST,O):

MACHINE_CODE_TYPE : AA_INSTR
MANTISSA DOC : 31
MAX_DIGITS : 15

MAX_INT

MAX_INT PLUS_1
MIN_INT

NAME

NAME_LIST
NAME_SPECIFICATION1

NAME_SPECIFICATION2
NAME_SPECIFICATION3

NEG_BASED_ INT
NIW MEM SIZE
NEW_ STOR UNIT
NBW SYS_NAME
PAGE _TERM1NATOR
RECORD DEFINITION

2147483647

2147483648

-2147483648
NO_SUCH_TYPE_AVAILABLE
DACS 680x0

/hone/sunZ/ada/68030/test/wrk/XZlZOA

/home/sunZ/ada/68030/test/wrk/xz1208

/home/sun2/ada/68030/test/wrk/X3119A

" 60 08 00 00

16#F000000E#
2097152
8
DACS_680x0
L}

RECORD - INSTR_NO: INTEGER ARGO: INTEGER ;ARG1: INTEGER;
ARG2: INTEGER;ARG3 : INTEGER;END - RECORD;

RECORD_NAME
TASK_SIZE
TASK_STORAGE_SIZE
TICK
VARIABLE_ADDRESS
VARIABLE_ADDRESS1
VARIABLE_ADDRESS2
YOUR_PRAGMA

40 86 8¢ 08 40 S0 00 #0

AA_INSTR

96

1024

2#1.0#E-14
FCNDECL.VARIABLE_ADDRESS
FCNDECL.VARIABLE ADDRESS1
FCNDECL.VARIABLE ADDRESS2
NOFLOAT

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to compiler documentation and
not to this report.

5 THE ADA COMPILER

The Ada Compiler compiles all program units within the specified source file and inserts the
generated objects into the current sublibrary. Compiler options are provided to allow the user
control of optimization, run-time checks, and compiler input and output files such as list files,
configuration files, the program library used, etc.

The input to the compiler consists of the source file, the configuration file (which controls the
format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
and Section 5.2 describes the source and configuration files.

options,

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
information. Output is described in section 5.3. If any diagnostic messages are produced
during the compilation, they are output to the diagnostic file and on the current output file. The
diagnostic file and the diagnostic messages are described in Section 5.3.2.

&

units from the program library, and an internal representation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 The Invocation Command
Invoke the Ada compiler with the following command to the SunOS shell:
$ ada {<option>) <source-or-unit>

where the options and parameters are:

35

DACS 680x0 Bare Ada Cross Compiler System - User's Guide

The Ada Compiler

OPTION DESCRIPTION REFERENCE
«[mojauto_inline Automatic inline expansion of local subprograms. 511
-body Compile body unit from source saved in library. 5.1.2
«check Specifies run-time constraint checks. 5.13
-configuration_file Specifies the configuration file used by the compiler 514
-{no}debug Genenate debug information. 515
-(molfpu Generate code for the floating point co-processors 5.1.6
library Specifies program library used. 5.1.7
-[noJist Writes a source listing on the list file. 5.18
-mode Protection mode. 5.19
-optimize Specifies compiler optimization. 5.1.10
-[nojsave_source Inserts source text in program library. 5.1.11
-gpecification Compile specification unit from source saved in library. 5.1.12
-{no}verbose Displays compiler progress. 5.1.13
-[no}warnings Display waming from the compiler 5.1.14
[no]xref Creates a cross reference listing. 5.1.15
<source-or-unit> The name of the source file or unit to be compiled. 5.1.16
Examples:

$ ada -list testprog

This example compiles the source file testprog.ada and generates a list file with the name
S,

$ ada -library my library test
This example compiles the source file test.ada into the library my_library.

Default values exist for most options as indicated in the following sections. Options and option
keywords may be abbreviated (characters omitted from the right) as long as no ambiguity arises.
Casing is significant for options, but not for option keywords. When conflicting options are given
on the command line, (e.g. -list and -nolist) the last one is used.

§.1.1 -[nolauto_inline

-auto.inline LOCAL | GLOBAL
-noauto_inline (default)

This option specifies whether subprograms should be inline expanded. The inline expansion only
occurs if the subprogram has less than 4 object declarations and less than 6 statements, and if the
subprogram fulfills the requirements defined for pragma INLINE (see Section B.2.3). LOCAL

that only inline expansion of locally defined subprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subprograms from other
units,

36

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

A waming is issued when inline expansion is not achieved.
5.1.2 -body

When using the option -body the Ada compiler will recompile the body of the unit specified as
the Ads compiler (see section 5.1.16) into the current sublibrary. The source code
the previous compilation of the body is used as the source code

t0o be compiled. If no source code is present or the body for the unit does not exist in the library,

an error message is issued. This option is primarily for use by the Ada Recompiler (sce chapter

D.

a
;
|
:

S.1.3 -check

~check [<keyword> = ON | OFF { ,ckeyword> = ON | OFF }]
~check ALL=ON (default)

~check specifies which run-time checks should be performed. Setting a run-time check to ON
enables the check, while setting it to OFF disables the check. All run-time checks are enabled by
default. The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL.
ALL All checks.

DISCRIMINANT Checks for discriminated fields.
ELABORATION Checks for subprograms being elaborated.

INDEX Index check.

LENGTH Array length check.

OVERFLOW Explicit overflow checks.

RANGE Checks for values being in range.

STORAGE Checks for sufficient storage available.
5.1.4 -configuration_file

-configuration_file

-configuration_file config (default)

This option specifies the configuration file to be used by the compiler in the current compilation.
The configuration file allows the user to format compiler listings, set error limits, etc. If the
option is omitted the configuration file config located in the same directory as the Ada compiler
is used by default. Section 5.2.2 contains a description of the configuration file.

37

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Compiler

5.15 -[noldebug

-debug
-nodebug (default)

Generate debug information for the compilation and store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I1 Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-I1 Ada Symbolic Cross Debugger. See Section 6.2.4.

5.1.6 -[nolfpu

-tpu (default)
[no)fpu

If the -fpu option is specified the compiler will assume that a floating point co-processor is present
and generate code accordingly. If the -nofpu option is specified the compiler will assume that a
floating point co-processor is not present, and will not generate instructions for Je co-processors.
Floating point operations are instead implemented by calls to run time library.

5.1.7 -library

-library <file-spec>
-library SADA_LIBRARY (default)

This option specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a cument sublibrary, the current
program library (current sublibrary and ancestors up to root) is also implicitly specified.

If this option is omitted, the sublibrary designated by the environmental variable ADA_LIBRARY

is used as the current sublibrary (see Chapter 3). Section 5.4 describes how the Ada compiler uses
the library.

5.1.8 -[nojlist

~list
-nolist (default)

-list specifies that a source listing will be produced. The source listing is written to the list file,

which has the name of the source file with the extension JJis. Section 5.3.1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced, regardless of LIST pragmas in the program or
diagnostic messages produced.

38

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Compiler

$.1.9 -mode

-mode ALL | BASIC | SECURE
-mode ALL (default)

The compiler generates code to execute in a non-protected BASIC mode, or in a protected
SECURE mode according to the -mode option. Code can be generated to run in all protection
modes by specifying ALL, this way protection mode can be decided at link time. The fastest and
most compact code is gencrated by selecting the protection mode in which the program shall
execute. Please refer to chapter 10 for details on protection modes. Mode SECURE is only usable
if the program will be linked for a Motorola 68030 or 68040 processor.

5.1.19 -optimize

-optimize [<keyword> = ON | OFF { ,ckeyword> = ON | OFF }]
<optimize ALL=OFF

This option specifies which optimizations will be performed during code generation. The possible
keywords are:

ALL All possible optimizations are invoked.

CHECK Eliminates superfluous checks.

CSE Performs common subexpression elimination including common address
expressions.

FCT2PROC Change function calls returning objects of constrained array types or

objects of record types to procedure calls.
REORDERING Transforms named aggregates to positional aggregates and named
parameter associations to positional associations.
STACK_HEIGHT Performs stack height reductions (also called Aho Ullman reordering).
BLOCK Optimize block and c2)l frames.

Setting an optimization to ON enables the optimization, while setting an optimization to OFF
disables the optimization. All optimizations are disabled by default. In addition to the optional
nptimizations, the compiler always performs the following optimizations: constant folding, dead
code elimination, and selection of optimal jumps.

5.1.11 -[no)save_source

-Save_source (default)
-Nosave._source

When -save_source is specified, a copy of the compiled source code is placed in the program
library. If -nosave_source is used, source code will not be retained in the program library.

Using -nosave_source, while helping to keep library sizes smaller, does affect the operation of
the recompiler, see Chapter 7 for more details. Also, it will not be possible to do symbolic
debugging at the Ada source code level with the DACS-680x0 Symbolic Ada Debugger, if the
source code is not saved in the library.

39

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

$.1.12 -specification

-gpecification

When using the option -specification the Ada compiler will recompile the specification of the unit
speciﬁedaspammetertomeAdacompiler(seesecﬁonS.l.IG.)il_uomemmmwbli.bn{y.m

5.1.13 -[no}verbose

-verbose
-noverbose (default)

When -verbose is specified, the compiler will output information about which pass the compiler
is currently running, otherwise no information will be output.

5.1.14 -[no}warnings

-warnings (default)
-nowarnings

All wamings from the Ada Compiler are displayed when option -warnings is specified. All

compiler wamings are suppressed when -nowarnings is specified. See Section 5.3.2 for a
description of how and when wamings are reported from the Ada Compiler.

5.1.15 -[no]xref

-xref
-noxref (default)

A cross-reference listing can be requested by the user by means of the option -xref. If the -xref

option is given and no severe or fatal errors are found during the compilation, the cross-reference
listing is written to the list file. The cross-reference listing is described in Section 5.3.1.3.

5.1.16 The Source or Unit Parameter

<source-or-unit>
This parameter specifies either the text file containing the Ada source text to be compiled or,
when option -body or -specification is used, the name of the unit to be compiled. When

interpreted as a file name, the file type ".ada" is assumed by default, if the file type is omitted
in the source file specification.

40

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

§.2 Compiler Input
Input to the compiler consists of the command line options, a source text file and, optionally, a
configuration file.

$.2.1 Source Text

The user submits one file containing a source text in each compilation.

The format of the source text must be in ISO-FORMAT ASCII. This format requires that the
source text is a sequence of ISO characters (ISO Standard 646), where each line is terminated by
either one of the following termination sequences (CR means carriage retumn, VT means vertical
ubnnation.LFmeanslimfeed.andPFmeans form feed):

* A sequence of onec or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT, LF, or FF.

» Any of the characters VT, LF, or FF unmediately preceded and followed by a sequence
of zero or more CRs.

In general, ISO control characters are not permitted in the source text with the following
exceptions:

» The horizontal tabulation (HT) character may be used as a separator between lexical units.
e LF, VT, FF, and CR may be used to terminate lines, as described above.
The maximum number of characters in an input line is determined by the contents of the
configuration file (sece Section 5.22). The control characters CR, VT, LF, and FF are not

considered a part of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

5.22 Configuration File
Centain processing characteristics of the compiler, such as format of input and output and error
limit, may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard SunOS text file. The contents of the configuration
file must be an Ada positional aggregate, written on one line, of the type
CONFIGURATION_RECORD, which is described below.
The configuration file (conflg) is not accepted by the compiler in the following cases:

» The syntax does not conform with the syntax for positional Ada aggregates.

¢ A value is outside the ranges specified.

* A value is not specified as a literal.

« LINES_PER_PAGE is not greater than TOP.MARGIN + BOTTOM_MARGIN.

41

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

« The aggregate occupics more than one line.

If the compiler is unable to accept the configuration file, an error message is written on current
output and the compilation is terminated.

Below is a description of the record whose values must appear in aggregate form within the
configuration file. The record declaration makes use of some other types (given below) for the
sake of clarity.

type CONFIGURATION_RECORD is
record

IN_FORMAT : INFORMATTING;
OUT_FORMAT : OUTFORMATTING;

ERROR_LIMIT : INTEGER RANGE 1..32.767;
end record;

type INPUT_FORMATS is (ASCII);

type INFORMATTING is
recorxd
INPUT_FORMAT ¢ INPUT_FORMATS;
INPUT_LINELENGTH : INTEGER range 72..250;
end record;

type OUTFORMATTING is

record
LINES_PER_PAGE : INTEGER range 30..100;
TOP_MARGIN : INTEGER range 4.. 90;
BOTTOM_MARGIN : INTEGER range O0.. 90;
OUT_LINELENGTH : INTEGER range 80..132;

SUPPRESS_ERRORNO : BOOLEAN;
end record;
The outformatting parameters have the following meaning:

1) LINES_PER_PAGE: specifies the maximum number of lines written on each page
(including top and bottom margin).

2) TOP_MARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTTOM_MARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PER_PAGE - TOP_MARGIN - BOTTOM_MARGIN.

4) OUT_LINELENGTH: specifies the maximum number of characters written on each line.
Lines longer than OUT_LINELENGTH are separated into two lines.

5) SUPPRESS_ERRORNO: specifies the format of emor messages (see Section 5.3.2.2).

42

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Compiler

The name of a user-supplied configuration file can be passed to the compiler through the
-configuration_file option. DDC-I supplies a default configuration file (conflg) with the following
content:

((ASC1I, 126), (48,5,3,100,FALSE), 200)

T
Top I
margin

Lines
per
page

Bottom I
margin

Out_line_length
Figure 5.1: Page Layout

5.3 Compiler Output

The compiler may produce output to the list file, the diagnostic file, and the current output file.
It also updates the program library if the compilation is successful. The present section describes
the text output in the three files mentioned above. The updating of the program library is described
in Section 54.

The compiler may produce the following text output:

1) A listing of the source text with embedded diagnostic messages is written to the list file,
if the option -Hist is active.

2) A compilation summary is written to the list file, if -list is active.

43

DACS 680x0 Bare Ada Cross Compiler Systiem - User's Guide
The Ada Compiler

3) A cross-reference listing is written to the list file, if -xref is active and no severe or fatal
emors have been detected during the compilation.

4) If there are any diagnostic messages, a diagnostic file containing the diagnostic messages
is written.

S) Diagnostic messages other than wamings are written on the current output file.

§.3.1 The List File
If the user requests any listings by specifying the options -list or -xref, a new list file is created.
The name of the list file is identical to the name of the source file except that it has the file type
*Jis". The file is located in the current directory. If any such file exists prior to the compilation,
the file is deleted.

The list file may include one or more of the following parts: a source listing, a cross-reference
listing, and a compilation summary.

The parts of the list file are separated by page ejects. The contents of each part are described in
the following sections.

The format of the output to the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

§.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

« Parts of the listing can be suppressed by the use of LIST pragmas.

e A line containing a construct that caused a diagnostic message to be produced is printed
even if it occurs at a point where listing has been suppressed by a LIST pragma.

53.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the
option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

44

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Compiler

2) The number of diagnostic messages produced for each class of severity (see Section 5.3.2.1).
3) Which options were active.

4) The full name of the source file.

5) The full name of the current sublibeary.

6) The number of source text lines.

7) The size of the code produced (specified in bytes).

8) Elapsed real time and elapsed CPU time.

9) A "Compilation terminated” message if the compilation unit was the last in the compilation
or "Compilation of next unit initisted” otherwise.

§.3.1.3 Cross-Reference Listing

A cross-reference listing is an alphabetically sorted list of identifiers, operators and character
literals of a compilation unit. The list has an entry for ecach entity declared and/or used in the
unit, with a few exceptions stated below. Overloading is evidenced by the occurrence of multiple
entries for the same identifier.

For instantiations of generic units, the visible declarations of the generic unit are included in the
cross-reference listing immediately after the instantiation. The visible declarations are the
subprogram parameters for a generic subprogram and the declarations of the visible part of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for string
literals.

The following are not included in the cross reference listing:
* Pragma identifiers and pragma argument identifiers.
* Numeric literals.
e Record component identifiers and discriminant identifiers. For a selected name whose
selector denotes a record component or a discriminant, only the prefix generates
cross-reference information.

* A parent unit name (following the keyword SEPARATE).

45

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Compiler

Each entry in the cross-reference listing contains:

+ The identifier with at most 15 characters. If the identifier exceeds 15 characters, a bar ("I)
is written in the 16th position and the rest of the characters are not printed.

+ The place of the definition, i.c. a line number if the entity is declared in the current
compilation unit, otherwise the name of the compilation unit in which the entity is declared
and the line number of the declaration.

+ The line numbers at which the entity is used. An asterisk ("*") after a line number indicates
an assignment to a varisble, initialization of a constant, assignments to functions, or
user-defined operators by means of RETURN statements.

5.3.2 The Diagnostic Flle

The name of the diagnostic file is identical to the name of the source file except that it has the
file type ".err". It is located in the current directory. If any such file exists prior to the
compilation the newest version of the file is deleted. If any diagnostic messages are produced
during the compilation a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each preceded by a line
showing the number of the line in the source text causing the message, and followed by a blank
line. There is no separation into pages and no headings. The file may be used by an interactive
editor to show the diagnostic messages together with the erroneous source text.

5.3.2.1 Diagnostic Messages

The Ada compiler issues diagnostic messages to the diagnostic file. Diagnostics other than
wamings also appear on standard output. If a source text listing is required, the diagnostics are
also found embedded in the list file (see Section 5.3.1).

In a source listing, a diagnostic message is placed immediately after the source line causing the
message. Messages not related to any particular line are placed at the top of the listing. The lines
are ordered by increasing source line numbers. Line number O is assigned to messages not related
to any particular line. Onnmdudmndnmessagaappearmunomrmwmdnheym
generated by the compiler.

The diagnostic messages are classified according to their severity and the compiler action taken:
Waming: Reports a questionable construct or an eror that does not influence the meaning of the
program. Wamings do not hinder the generation of object code.
Example: A waming will be issued for constructs for which the compiler detects that
they will raise CONSTRAINT_ERROR at run time.

Error: Reports an illegal construct in the source program. Compilation continues, but no object
code will be generated.

46

Severe
enor:

Fatal
error:

-

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Compiler

Examples: most syniax emmors; most static semantic errors.

Reports an etor which causes the compilation to be terminated immediately. No object
code is generated.

Example: A severe error message will be issued if a library unit mentioned by a WITH
clause is not present in the current program library.

Reports an error in the compiler system itself. Compilation is terminated immediately
and no object code is produced. The user may be able 0 circumvent a fatal error by

correcting the program or by replacing program constructs with altematives. Please
infoom DDC-I about the occurrence of fatal errors.

The detection of more emors than allowed by the number specified by the
ERROR_LIMIT parameter of the configuration file (see section 5.2.2) is also considered a severe

$.32.2 Format and Content of Diagnostic Messages

For centain syntactically incorrect constructs the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (a carat symbol) to the offending symbol or to an illegal

character.

The text line contains the following information:

The diagnostic message identification "***".

The message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error:

Z is an imeger which together with the message number X uniquely identifies the compiler

location that generated the diagnostic message; Z is of importance mainly to the
compiler maintenance team -- it does not contain information of interest to the compiler
user.

The message code (with the exception of the severity code) will be suppressed if the

parameter SUPPRESS_ERROR_NO in the configuration file has the value TRUE (see
section 5.2.2).

47

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Compiler

« The message text; the text may include one context dependent field that contains the name
of the offending symbol; if the name of the offending symbol is longer than 16 characters
only the first 16 characters are shown.

Examples of diagnostic messages:

hes 18W-3: Warning: Exception COMSTRAINT_ERROR will be raised here
whs 320E-2: Name OBJ does not denote a type

*at 5358-0: Expression in return statement missing

=a% 1508S-0: Specification for this package body not present in the library

§.3.3 Return Status
The Ada Compiler’s return value will have one of the following values:

0: The compilation was successful, wamings may have been generated.
1,2: Fatal intemal error in the run-time system. Please contact DDC-I engineers.
34: Enors in command line options, compiler generates an error message indicating the

emor. Please contact DDC-I

6: Severe error during compilation, ¢.g. a unit mentioned by a WITH clause is not present
in the library. Compiler generates an error message indicating the error.

7 Error during compilation, ¢.& most syntax errors. Compnlcrgmcmesanenormessage
indicating the error.

eror.
5: Fatal intemnal emor in the compiler. Compiler generates an error message indicating the
engineers.

5.4 The Program Library

This section briefly describes how the Ada compiler changes the program library. For a more
general description of the program library the user is referred to Chapter 4.

The compiler is allowed to read from all sublibraries constituting the current program library, but
only the current sublibrary may be changed.

§.4.1 Correct Compilations

In the following examples it is assumed that the compilation units are correctly compiled, i.e. that
no errors are detected by the compiler.

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Compiler
Compilation of a library unit which is a declaration
If a declaration unit of the same name exists in the current sublibrary, it is deleted together with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, wgemer
with an empty body unit.
Compilation of a library unit which is a subprogram body
Am-nbodyMampihﬁonmhkuuwdasamaryumtifmewmmhlibmy
a subprogram declaration or a generic subprogram declaration of the same name and this
dednnonuﬂtiswinvalid.hanoducmitwmbeuwedasahmrymme
e When there is no library unit of that name.
* When there is an invalid declaration unit of that name.
e When there is a package declaration, generic package declaration, an instantiated package,
or subprogram of that name.
Compilation of a library unit which is an instantiation
A possible existing declaration unit of that name in the current sublibrary is deleted together with
its body unit and possible subunits. A new declaration unit is inserted.

Compliation of a secondary unit which is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. The new
body unit is inserted.

Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibrary it is deleted together with its possible subunits. The new
subunit is inserted.

5.4.2 Incorrect Compilations
If the compiler detects an error in a compilation unit, the program library will remain unchanged.

Note that if a file consists of several compilation units and an error is detected in any of these
compilation units, the program library will not be updated for any of the compilation units.

5.5 Instantiation of Generic Units

This section describes the order of compilation for generic units and describes situations in which
an emror will be generated during the instantiation of a generic unit.

49

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Compiler

$.52 Generic Formal Private Types

This section describes the treatment of a generic unit with a generic formal private type, where
there is some construct in the generic unit that requires that the corresponding actual type must
be constrained if it is an array type or a type with discriminants, and there exists instantiations
with such an unconstrained type (see [DoD-83] Section 12.3.2(4)). This is considered an illegal
combination. In some cases the error is detected when the instantiation is compiled, in other cases
when a constraint-requiring construct of the generic unit is compiled:

1) If the instantiation appears in a later compilation unit than the first constraint-requiring construct
of the generic unit, the error is associated with the instantiation which is rejected by the
compiler.

2) If the instantiation appears in the same compilation unit as the first constraint-requiring
construction of the generic unit there are two possibilities:

a) If there is a constraint-requiring construction of the generic unit after the instantiation, an
ermor message appears with the instantiation.

b) If the instantiation appears after all constraint-requiring constructs of the generic unit in that
compilation unit, an error message appears with the constraint-requiring construct but it will
refer to the illegal instantiation.

3) The instantistion appears in an earlier compilation unit than the first constraint-requiring
construction of the generic unit, which in that case will appear in the generic body or a
subunit. If the instantiation has been accepted, the instantiation will correspond to the generic
declaration only, and not include the body. Nevertheless, if the generic unit and the instantiation
are located in the same sublibrary, then the compiler will consider it an error. An error message
will be issued with the constraint-requiring construct and will refer to the illegal instantiation.
The unit containing the instantiation is not changed, however, and will not be marked as
invalid.

5.6 Uninitialized Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

DACSﬁmsaeMaCmCanpkrSynem User's Guide
The Ada Compiler
5.7 Program Structure and Compilation Issues
The Sollowing limitations apply 0 the DACS-680x0 system:
« Each source file can contain, at most, 32_767 lines of code.

+ The name of compilation units and identifiers may not exceed the number of characters given
in the INPUT_LINELENGTH parameter of the configuration file.

« An imeger literal may not exceed the range of INTEGER, a real literal may not exceed the
range of LONG_FLOAT.

* The number of formal psrameters permitted in a procedure is limited to 64 per parameter
specification. There is no limit on the number of procedure specifications. For example the
declaration:

procedure OVER_LIMIT (INTEGERO1,
INTEGERO2,

iﬁ'.réér-mss: in INTEGER);
exceeds the limit, but the procedure can be accomplished with the following:

procedure UNDER_LIMIT (INTEGERO1 : in INTEGER;
INTEGERO2 : in INTEGER;

INTEGER66 : in INTEGER);

The above limitations are diagnosed by the compiler. In practice these limitations are seldom
restrictive and may easily be circumvented by using subunits, separate compilation, or creating new
sublibraries.

51

52

LINKER OPTIONS

The linker options of this Ada implementatic:.,, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

6 THE ADA LINKER

The DACS-680x0 linker must be executed to creatc a program executable in the target
environment. Linking is a two stage process that includes an Ada link using the information in
the Ada program library, and a target link to integrate the application code, run-time code, and
any additional configuration code developed by the user. The linker performs these two stages with

a single command, providing options for controlling both the Ada and target link processes. This
chapter describes the link process, the options to the DACS-680x0 linker, and the configuration
of the linker.

6.1 The Link Process

The linking process can be viewed as two consecutive phases that are automatically carried out
when issuing the link command al.

The link process is carried out in the following steps:
o Determination of Ada compilation units to include in the target program.
o Checking the validity of the included units according to the Ada rules.
¢ Determination of an elaboration order for the target program.
« Group units and tasks into classes (for security critical applications, see chapter 10).

» Generaticn of an object module to invoke the elaboration of the included Ada compilation
units. This module is called the elaboration module.

« Determination of attributes of the program being linked (see section 6.7).
* Generation of an initialization module.

» Generation of option file(s) to the target linker.

» Invocation of the target linker.

The tasks of the first three steps are described in chapter 10 of the [DoD-83), the last five steps
are described in detail in the following sections.

6.2 The Invocation Command

Enter the following command to the SunOS shell to invoke the linker:
$ al {<option>} <unitname>

where the options and parameters are:

53

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide

The Ada Linker
OPTION DESCRIPTION REFERENCE
-(nojboot Generate boot module. 6.2.1
~[nojclass_file Class file name. 6.2.2
~Cpu Select Target board CPU. 6.23
<[noldebug Generate debug information. 6.24
~defauits Save options as new linker defaults. 6.2.5
«[nojentry Altemative program start label. 6.2.6
-[nojexceptions Control of exception management. 6.2.7
<[nojexecutable Name of executable file. 6.2.8
<{no)fpu Control of which floating point processor is used. 6.29
~[noJheap Control of memory management. 6.2.10
-(noJinit_file Initialization file name. 6.2.11
-interrupt_stack Interrupt stack description. 6.2.12
<[nojitch Number of Interrupt Task Control Blocks allocated. 6.2.13
«[noJkeep Do not delete temporary files. 6.2.14
<library The library used in the link. 6.2.15
«[noJlog_file Log file name. 6.2.16
-[noJlogical_memory Logical memory specification, 6.2.17
-main_task Main task specification. 6.2.18
-[nojmap Keep linker map file. 6.2.19
-mmu_details Setup values for MMU registers. 6.2.20
-mode Execution mode. 6.2.21
-[nojoption_file Linker option file name. 6.2.22
-ram Physical RAM memory specification. 6.2.23
-ram_base Base address for RAM sections. 6.2.24
-ram_sections Description of RAM memory sections. 6.2.25
-[nojrom Physical ROM memory specification 6.2.26
«(nojrom_base Base address for ROM sections. 6.2.27
-[nojrom_sections Description of ROM memory sections. 6.2.28
-rts_stack_use Amount of memory used by RTS. 6.2.29
-[no}scod Supervisor code sections. 6.2.30
-[no}sdat Supervisor data sections. 6.2.31
-[no]statistics Print statistics. 6.2.32
-[nojtarget_options Options to the target linker. 6.2.33
-task_defaults Default values for tasks. 6.2.34
-[nojtch Number of Task Control Blocks allocated. 6.2.35
-ucc_library UCC library name. 6.2.36
«[(nojucod User code sections. 6.2.37
-[noJucst User constant sections. 6.2.38
«[nojudat User data sections. 6.2.39
+[noJusr_library A user supplied object library. 6.2.40
«[no]vector Interrupt vector description. 6.2.41
~[no}verify Print information about the link. 6.242
~[{no}warnings Print 6.243
<unit-name> Name of the main unit. 6.2.44

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

All options and option keywords may be abbreviated (characters omitted from the right) as
long as no ambiguity arises. Casing is significant for options but not for option keywords.

For all option values specifying a 32-bit address, 2-complement wrap-around is performed on
negative numbers, ¢.g. -rom_base=-1 is equivalent to -rom_base=OxfIffffff.

6.2.1 -{nojboot

-boot
-noboot (default)

If -boot is specified an absolute file suited to gain control upon a reset is generated. The first two
longwords in the RTS_CODE section contain the start Program Counter and the interrupt stack
address. If -noboot is specified the absolute file does not contain the reset information. -boot is
not valid when option -debug is specified, see section 6.2.4.

6.2.2 -[no)class_flle

-class_file <file_name>
-noclass_file (default)

Specifies the name of the file containing the class specifications. The syntax of class specifications
is described in chapter 10, where the concepts of classes are described as well. This option is
only legal if option -mode is set to SECURE or SAFE.

6.2.3 cpu

-cpu 68020 | 68030 | 68040
-cpu <highest licensed> (default)

Specifies the Motorola Central Processing Unit (CPU) on the target board. The -cpu option must
match the actual CPU on the target board, as this option directs the Ada Linkers selection of RTS
and supporting libraries. This option defaults to the highest CPU for which the DACS-680x0 has
been licensed, with 68020 being the lowest and 68040 being the highest.

6.24 -[no]debug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is required
to enable symbolic debugging. If -nodebug is specified, the Ada linker will skip the generation
of debug information, thus saving link time, and will not insert the debug information into the
chosen sublibrary, thus saving disk space. Note that any unit which should be symbolically
debugged with the DDC-1 Ada Symbolic Cross Debugger must also be compiled with the -debug

55

DACS 680x0 Bare Ada Cross Compiler System - -User's Guide
The Ada Linker

option. See Section S5.1.5. -debug is not valid, when options -boot or -vector INIT are specified,
see sections 6.2.1 and 6.2.41.

625 -defaults

-defaults
Saves the current setting of all options and parameters, except the -defaults option itself, as new
defauits for the linker. The defaults are saved in the file specified by the environmental variable

ADA_LINK_DEFAULTS. When this option is present, no actual linking will take place. For a
complete description of the Ada Linker defaults system, please refer to section 6.3.

6.2.6 -{nojentry
-entry <string>
-noentry
-entry "Ada_ELABSEntry" (default)

The -entry option specifies the entry name of the program. If -entry is not specified the entry
point is the start of the elaboration module.

6.2.7 -[nojexceptions

-exceptions (default)
-noexceptions

If -exceptions is specified the exception management routines are included in the target program.
If -noexceptions is specified, the exception management routines are not included in the program,
and the program will abort if the program raises any exceptions. If -noexceptions is specified
and the target program has the exception attribute (see section 6.7) a wamning is reported, and the
exception management routines will not be included.

6.2.8 -[no)executable
-executable <flle-name>
-noexecutable
-executable <main_umit>.x (default)

The -executable option specifies the file name of the absolute file created. <file-name> is used
as name for the absolute file. If -noexecutable is specified the absolute file is not created.

56

DACS 680x0 Bare Ada Cross Compiler System - User's Guide

The Ada Linker
6.2.9 -[nolfpu

-fpu 68881 | 68882

-aofpu

fpu (default)

Specifies the floating point co-processor available on the target system. If -cpu 68040 has been
specified, -fpu 68881 is not allowed, as the MC68040 FPU emulates the MC68882 coprocessor

Hdlmpﬂaﬁonmiumﬂmdforexmmmmpihdmm-mfpuopﬁmmﬂonmgpmm
instructions are generated and a link with -nofpu will never fail.

6.2.10 -[nojheap
<heap (default)
-noheap

If -heap is specified and the target program has the heap atribute (sce section 6.7) then

%i

management
ﬂlewzapmgmmhasmcheapatHthe,memrismponedandhnhngtemms.

6.2.11 -[no)init__file

-init_file <flle-name>
-noinit_file (default)

The -init_file option specifies the name of a user supplied initialization file. <file-name> is used
as name for the initialization file. If -noinit_file is specified, the linker generates an initialization
file with the name <prefix>_initsrc. It is assumed that the initialization file is an assembler
source file.

6.2.12 -interrupt_stack

-interrupt_stack [NOSTART | START=<address>](,SIZE=<number>]
-interrupt_stack NOSTART,SIZE=10240 (default)

Specifies the creation of the interrupt stack. If START=<address> is specified the interrupt stack
pointer is initialized to <address>. If NOSTART is specified the linker allocates the interrupt
stack in the section RTS_DATA. START=<address> is not valid when -mode is set to SECURE
or SAFE. If SIZE=<number> is specified the <number> bytes is allocated for the interrupt stack.

57

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

~keep
-nokeep (default)

If -keep is specified temporary linker files are not deleted, otherwise they are deleted. See also
section 5.5 about temporary linker files.

6.2.18 library

-library <file-name>
<library SADA_LIBRARY (default)

The -library option specifies the current sublibrary, from which the linking of the main unit will
take place. If this option is not specified, the sublibrary specified i
ADA_LIBRARY is used.

z.
|
;

6.2.16 -[noliog_file

-log_file <flle-name>
-nolog-_flle (default)

Specifies that linker information shall be written to a file named <file-name>. The log file will
contain all vesification information specified by the -verify option and all statistics specified with
the -statistics option, plus wamings and errors messages, a listing of the class file (see section
6.2.2), an expanded list of the class file specifications, a detailed description of each compilation
unit included in the program, and a link summary.

58

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker

6.2.17 -[nofogical_memory

-logical_memery <start_addr>,<end _addr>{,<start_sddr>,<cend_addr>}
(default in BASIC mode)

-nological _memory
<logical_memory 0x1000000,0x7fIfIY (default in SECURE and SAFE mode)

The -logical_memory specifies the logical memory areas available for task stacks and task heaps
in the program. -logical_memory is only legal when option -mode is set 1o SECURE or SAFE.

The logical memory must be disjoint from the physical memory (see section 6.2.23).

6.2.18 -mmin_task

-main_task [PRIORITY=<number>)
NOTIME_SLICE | ,TIME_SLICE=<real>}
[,NOFLOAT | ,FLOAT)
LNOSTACK_START | STACK_START=<address>)
[STACK_SIZE=cnumber>)
LHEAP_SIZE=<number>]

-main_task PRIORITY=12,NOTIME _SLICE,FLOAT,NOSTACK_START,\
STACK_SI1ZE=10240,HEAP_SIZ2E=10240 (default)

The -main_task option specifies priority, time slice, use of floating point co-processor, siack
stant, stack size and heap size for the main task. If PRIORITY=<number> is specified and the
pragma PRIORITY has not been applied then the main task has the priority <number> which
must be in the range 1.24, oﬂmseithasmepnomyspeuﬁedinunmmlfme

have a time slice. If FLOAT is specified the main program may use the floating point
co-processor. The state of the co-processor will not be saved as part of the main task context. If
NOFLOAT is specified the main program must NOT use the floating point co-processor. If
STACK_START=c<address> is specified the main stack pointer is initialized t0 <address>. If
NOSTACK_START is specified the linker allocates the stack for the main program in the section
RTS_DATA, and initializes the stack pointer. STACK_START=<address> is not valid when
-mode is set to SECURE or SAFE. If STACK_SIZE=<number> is specified then <number>
of bytes is allocated for the main program stack. If HEAP_SIZE=<number> is specified then
<number> of bytes is allocated for the main program heap.

.'I‘lnmapﬁlecommnsmformaumabwtmqnory
file i n_unit_name>.map. Please refer to

“'é_

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker

6.2.20 -{no)mmu_details

~mumu_detalls [TIA=<number>],NOTIB | ,TIB=<number>]
LNOTIC | ,TIC=<cnumber>}[, NOTID | ,TID=<number>]
LPAGE_SIZE=<number>)[,SEGMENT _SIZE=<cnumber>)
-nomum_detalls (default in BASIC mode)
-mmn_detalls TIA=7,TIB=7,TIC=6,NOTID ,PAGE_SIZE=12 SEGMENT_SIZE=25
(default in SBECURE and SAFE mode)

Specifies values for the MMU Transiation Control Registers. -mmu_detalls is only legal when
<mode is set 90 SECURE or SAFE. -nommu_details is only legal when MODE is set to BASIC.
The parameter values are all number of bits. TIA to TID specifies the number of bits to use on
MMU table level A to D. PAGE_SIZE specifies the number of bits used for each page accessed
by a page descriptor entry in the MMU tables. SEGMENT_SIZE specifies the number of bits
used for a segment of the logical memory assigned to each task group. The segment of a task

group contains the task group heap and stacks of all tasks of the task group. Please refer to
WGAﬂaﬂ[MOIOROLA-b]fuadmibddesaipumofduMMUmmm

A mumber of constraints apply to the keywords of the option:

o If «cpu 68030 is specified, the following values are valid for the keywords of the
-mmu_details option: TIA, TIB, TIC and TID must be in the range 2..15; NOTIB,
NOTIC and NOTID can also be used. PAGE_SIZE must be in the range 8..15 for page
sizes between 256 bytes and 32K bytes. SEGMENT_SIZE must be in the range 9..30 for
a segment size between 512 bytes and 1 gigabyte.

» If -cpu 68040 is specified, the following values are valid for the keywords of the
-tenu_details option: TIA and TIB must be 7, TIC must be 5 or 6, and NOTID must
be used. NOTIB and NOTIC cannot be used. PAGE_SIZE must be 12 or 13 for a page
size of 4K bytes or 8K bytes. SEGMENT_SIZE must be 18 or 25 for a segment size of
256K bytes or 32M bytes.

e SEGMENT_SIZE must be equal to PAGE_SIZE + TID or PAGE_SIZE + TID + TIC
or PAGE_SIZE + TID + TIC + TIB.

* PAGE_SIZE must be equal to or greater than each of TIA + 2, TIB + 2, TIC + 2, and
TID + 2.

» If NOTIB is specified, both NOTIC and NOTID must be specified as well, otherwise if
NOTIC is specified, NOTID must be specified as well.

¢ The sum of TIA, TIB, TIC, TID and PAGE_SIZE must be equal to 32.

The default value of -mmu_details in SECURE and SAFE mode defines a four level address
transistion table tree with each page having a size of 4 Kbytes and each logical segment having
a size of 32 Mbytes. See section 10.5 for further description of how the values for -mmu_details
is utilized.

DACS 680x0 Bare Ada Cross Compiler System - User’'s Guide
The Ada Linker

mwmxofmammwm
6.2.22 -[nojoption_file

-option_flle <file-name>
-nooption_file (default)

an option file with the name <main_unit_name>.opt.

6.2.23 -ram

-ram <start_addr>,<end_addr>{,<start_addr>,<end_addr>}
-ram Ox00xffMf (default)

The -ram specifies the physical RAM memory available for the executable program.

6.2.24 -ram_base

-ram_base <address>
-ram_base 0x10000 (default)

The -ram_base option specifies the base address for the program placed in RAM memory. The
program sections specified in option -ram_sections arc placed consecutively from the address
specified with this option. In SECURE and SAFE modes, the base address will always be page
aligned. The address must be within the physical RAM memory specified in option -ram.

61

T " Chad

DACS 630x0 Bare Ada Cross Compiler System - User’s Guide

The Ada Linker
€.2.2S -ram_sections
-ram_sections <section_name>{,csection_name>)
-ram.sections SUPER_CODE,SUPER_DATA,USER.CODE,\
USER_CONS,USER_DATA (default)

The -ram_sections option specifies the sections to be placed in RAM memory. The sections are
placed in the specified order from the address specified with option -ram_base. Valid section
names are SUPER._CODE, SUPER_DATA, USER..CODE, USER_CONS and USER_DATA (see
section 6.8).

6.2.26 -[nojom

-rom <start_addr>,<end_addr>{,<start_addr>,<end_addr>}
-norom (default)

The -rom specifies the physical ROM memory available for the executable program.

6227 -{nolrom_base

~ -rom_base <address>
-norom_base (default)

The -rom_base option specifies the base address for the program placed in ROM memory. The

program sections specified in option -rom_sections are placed consecutively from the address
apecxﬁedwilhﬂnsmon.lnSECUREandSAFEmodes,mebaseaddmswillalwaysbepage
aligned by truncating the address with the number of bits specified in option -mmu_details
keyword PAGE_SIZE, ie. the basc address will be the start of the page appointed by the
specified address. The address must be within the physical ROM memory specified in option
-rom.

6.2.28 -[nojrom_sections

-rom_sections <section_name>{,<section..name>}
-norom._sections (default)

The -rom_sections option specifies the sections to be placed in ROM memory. The sections are
placed in the specified order from the address specified with the -rom_base option. Valid section
are SUPER_CODE, USER_CODE and USER_CONS (see section 6.8). By default no
sections are placed in ROM.

62

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker

6229 -ris_stack_use

~ris_stack _use <number>
rts_stack_use 0 (defauk)

Specifies the amount of extra stack space allocated in cach task for the use of user supplied code
in the RTS. If the Ada code interfaces to any extemnally supplied user code (e.g. by
~usr_library option) executing in supervisor mode, -rts_stack _use should be set to
of stack consumed by this external code. The Ada Linker determines how much RTS stack space
it will need for the RTS operations, and will automatically allocate the minimum necessary RTS
stack space.

6.2.30 -{nojscod

-scod <siring>{,<string>}
-noscod
-scod RTS_.CODE (default)

Specifies which program sections are to be placed in the supervisor code space. -noscod indicates
that no program sections should be placed in the supervisor code space. See section 6.8 about
program sections.

6.2.31 -[nojsdat

-sdat <string>{,<string>}
-nosdat

-sdat RTS_.DATA (default)

Specifies which program sections are to be placed in the supervisor data space. -nosdat indicates
that no program sections should be placed in the supervisor data space. See section 6.8 about
program sections.

6.2.32 -[no)statistics

-siatistics
-nostatistics (default)

-statistics specifies that statistics should be displayed about the compilation units included in the

program and their dependencies, otherwise no statistics is displayed. If option -log_file is specified
(sce section 6.2.16), the statistics will be included int the log file as well.

63

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

~task_defaults [STACK_SIZE=<number>](,PRIORITY=<number>]
[[NOTIME_SLICE | ,TIME_SLICE=creab>)
-task_defanlts STACK_SIZE=10240,PRIORITY=12,NOTIME_SLICE (default)

Specifies the default values to be used for task creation. The defaults specified will be used when
creating tasks which do not contain pragma priority or the length clause specifying the stack size.
If STACK_SIZE=<number> is specified then <number> of bytes is allocated for a task stack.
If PRIORITY=<number> is specified then <number> is used as the priority of the task. The
specified priority must be in the range 1 to 24. If TIME_SLICE=<real> is specified then <real>
specifies the mumber of seconds to use as the time slice for the task; <real> has the form
<number>.cnumber>. If NOTIME_SLICE is specified the task does not have a time slice. If
the target program does not have the tasking attribute (see section 6.7) the -task_defaults option
is ignored.

6.2.35 -[nojtch
tcb <number>
-notch
<tcb 10 (default)
Specifies the number of task control blocks to be allocated. If -tcb 0 or -notcb is specified and

the target program has the tasking attribute the linker reports a error and no absolute file will be
produced. This opion is ignored if the target program does not have the task attribute (see section
6.7).

6.2.36 -ucc_lbrary

-ucc_library <file-name>
<ice_library $SADA_UCC (default)

The -ucc_library option specifies the name of the UCC library to include in the target program.
If the UCC library is not specified the environmental variable ADA_UCC is used as file name.

64

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker
6.2.37 -(nojucod
-ucod <string>{,<string>}
-noucod
-ucod ADA_CODE (default)
Specifies which program sections are to be placed in the user code space. -noucod indicates that
in .

no program sections should be placed
sections.

6.2.38 -{nojucst

-ucst <string>{,<string>}
-noucst
-ucst ADA_CONS (default)

Specifies which program sections are to be placed in the user constant space. -noucst indicates

that no program sections should be placed in the user constant space. See section 6.8 about
program sections.

6.2.39 -[nojudat
-udat <string>{,<string>}
-noudat
-udat ADA_DATA (default)
Specifies which program sections are to be placed in the user data space. -noudat indicates that

no program sections should be placed in the user data space. See section 6.8 about program
sections. -

6.2.40 -[nojusr_library

-usr_library <file_name>,{<file_name>}
-nousr _library (default)

When specified the object files and object libraries denoted by flle_name is included in the link,
otherwise no user library is included in the link.

6.241 -[no]vector
-vector [NOADDRESS | ADDRESS=<address>}[,COPY | ,INIT]

-novector
-vector NOADDRESS,COPY (default)

65

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

Specifies creation of the interrupt vector. If ADDRESS is specified the interrupt vector is placed
at <address>. When NOADDRESS is specified, the interrupt vector will be placed in the section
RTS_DATA. If COPY is specified the interrupt vector active when the program was invoked is
copied. If INIT is specified the interrupt vector is initialized by the routine Ada_UCC_DSInitIV.
-novector specifies that no initialization of the interrupt vector takes place. The program can
hereby be invoked by an interrupt. After program invocation the interrupt vector can potentially
be modified. INIT is not valid when option -debug is specified, see section 624.
ADDRESS=caddress> is invalid when -mode is set to SECURE or SAFE.

6.242 -[no)verify

-verify [ALL][,ELABORATION_ORDER},COMMANDS],PARAMETERS]
-noverify (default)

Determines the type and amount of information generated. If ELABORATION_ORDER is

specified the elaboration order is displayed, if COMMANDS is specified the commands executing

the various subprocesses are displayed, if PARAMETERS is specified the active parameters and

options are displayed, and if ALL is specified all of the above mentioned information is displayed.

gleoption -log-file is specified (see section 6.2.16) the information will be included in the log
as well.

6.243 -[no}warnings

-warnings
-nowarnings (default)

Specifies whether wamings should be generated or not. Warnings are generated when conflicts

between target program attributes and specified options are detected, and when a package does
not have a body.

6.2.44 The Main Unit Parameter
<unit-name>

'l'hemainunitmustbeapamneterlcspiocedureandmustbepresentinthelibmy.'I‘hemain
unit name is a required parameter.

6.3 The Linker Defaults System

As it can be seen from the description of options above, default values exist for all options.
However, it is possible to change the initial setting of default values and even have several
configurations of default values for the Ada Linker. The Ada Linker default values are controlled
by use of the option -defaults and the environmental variable ADA_LINK_DEFAULTS.

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

The Ada Linker obtains its option and parameter values in the following way: First, options are
initialized with the default values indicated in the above description of options. Second, new
option and parameter defsults are loaded from the file indicated by the environmental variable
ADA_LINK_DEFAULTS, if this points to an existing file. And third, options and parameters are
given the value specified in the invocation command of the Ada Linker.

When the option -defaults is specified, the current value of options and parameters are saved as
new defaults in the file identified by the environmental variable ADA_LINK_DEFAULTS. Note
that ADA_LINK_DEFAULTS is not defined as a environmental variable when the DACS-680x0
is distributed by DDC-I, s0 an explicit definition is necessary.

Assume that the default value of -itchb should be 25 instead of S, and that the new default settings
should be saved in the file DEFAULTS.LINK. The following commands could be used:

$_setenv ADA_LINK_DEFAULTS DEFAULTS.LINK
$ al -defaults -itcb 25 '

These commands will create a new file called DEFAULTS.LINK in the current directory (f it
does not exist already) and save the new linker default values in this file. As long as
ADA _LINK_DEFAULTS keeps its current value of DEFAULTS.LINK, all linking performed in
the current directory will have a -itch default value of 25. Note that one should normally assign
a fully expanded file name, like /home/ada_users/user2/work/DEFAULTS.LINK, to
ADA_LINK_DEFAULTS to ensure that the correct default file will be found no matter in what
directory the linking is performed.

Several configurations of Ada Linker defaults is possible, simply by changing
ADA_LINK_DEFAULTS to denote different linker default files depending on the desired
configuration. By the same method, different users can have different linker default values, simply
by having ADA_LINK_DEFAULTS denote different files.

When option -defaults is specified no actual linking takes place; only the current value of the
options and parameters are saved as new defaults. Before saving the new defaults, all options are
checkedtolnveavahdvaluemmoutmdemmofomeropum If this is not the case, an
error is reported and the new values are not saved as defaults. However, no check on

between the options are performed when specifying new default values, e.g. it is
possible to set -mode SECURE as default value without specifying a default value for -class_file.
The interdependence between option values is checked only when an actual linking will be
performed, i.e. when -defaults is not specified.

To reset the Ada Linker Defaults to the factory setting, simply use the command:
S setenv ADA_LINK_DEFAULTS ™"
which will ensure that no linker defaults file will be read when the linker is invoked. If the file

denoted by ADA_LINK_DEFAULTS will not be used again, the file can be deleted. The current
linker defaults setting can be viewed with the option -verify PARAMETERS, see section 6.2.42.

67

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker

6.4 Environmental Variables Used by the Ada Linker
When the Ada linker is executed, the following environmental variables are used:

VARIABLE PURPOSE

ADA_LIBRARY Identifies the defsult library used by all DACS tools. It is the lowest
level sublibrary in the program library hierarchy. This default may
be overridden by the -library option.

ADA_LINK_DEFAULTS Identifies the file containing the Ada Linker defaults. Defaults are
saved in this file when the option -defaults is used.

ADA_UCC Identifies the library containing the User Configurable Code, ¢.g. an
UCC library supplied by DDC-1. This default may be overridden by
the -ucc_library option.

6.5 File Names Used by the Linker
During the link, the following temporary files are created in the curmrent default directory:

<prefix>_init.src
<prefix>_init.obj
<prefix>_elab.src
<prefix>_elab.obj
<prefix>_end.src
<prefix>_end.obj
<prefix>.opt
<prefix>_<unit_no>.obj
<main_unit_name>.opt
<main_unit_name>.com

If the -keep option is used <prefix> is the main unit name, otherwise <prefix> is the process
identification (pid).

If linking for SECURE or SAFE mode (see section 6.2.21), the main unit and each defined class
will resuilt in the generation of a target linker option file.
6.6 Return Status

After a linking the retum value of the Ada Linker will reflect if the linking was successfully
completed. The following return values are possible:

68

z§;;

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker

link was successful. Wamings may have been generated during the link process.
error occurred during the link process, ¢.g. the Ada Linker is unable to find the UCC
The Ada Linker will generate an ermor message stating the cause of the error.
intemnal error has caused the Ada Linker to abort, please contact DDC-I engineers.

6.7 Program Attributes

The linker evaluates the following attributes of the target program:

Tasking constructs
The target program has the task attribute when Ada tasking constructs are used.

Floating point constructs

The target program has the float auributc when the program uses the floating point
co-processor. The target program will only use the co-processor instructions to implement
operations on floating point types.

Interrupts, entries or procedures
The target program has the interrupt attribute when the program contains address clauses
for task entries or the PRAGMA INTERRUPT_HANDLER.

Exception handlers
The target program has the exception attribute if the program contains any exception
handlers.

Heap
The target program has the heap attribute when the program contains allocations or
deallocations on the heap.

Secure execution

The target program has the secure attribute if the program is compiled with option -mode
set t0 SECURE or SAFE. In this case the MC68030/MC68040 on-chip Memory
Management Unit is used to protect code and data segments and for controlling storage
checks.

The linker uses the attributes to generate the initialization module, to issue wamings if a
combination of options is in conflict with the attributes of the target program, and to determine
- the proper RTS to include in the target link.

If a program contains interface calls interfacing to code which requires tasking, uses floating point
instructions or storage management, the Ada compilation unit must contain a pragma to set the
appropriate attribute. Please refer to Chapter 12 for details.

DACS 680x0 Bare Ada Croes Compiler System - User’s Guide

The Ada Linker

6.8 Program Sections

The compiler uses the following program sections:
Section Contents
RTS._CODE Run-Time System code
RTS_DATA Run-Time System data
ADA_CODE Compiler generated code
ADA_CONS Compiler generated constants
ADA_DATA Compiler generated data

Table 6.1: Program sections

The program sections RTS_DATA and ADA_DATA must be in RAM memory. The program
sections RTS_CODE, ADA_CODE, and ADA_CONS are not modified by the execution of the
program and may be placed in ROM. All sections must be placed in either RAM or ROM
memory.

The linker groups the program sections into S new sections: SUPER_CODE, USER_CODE,
USER_CONS, SUPER_DATA and USER_DATA. CODE and CONS sections can be stored in
ROM if desired. DATA sections must be placed in RAM. In SECURE and SAFE mode the
SUPER and USER sections can be accessed when executing at supervisor privilege level, while
only USER secctions can be accessed when executing at user privilege level (please refer to
[MOTOROLA-a] and [MOTOROLA-b] about supervisor and user privilege level). In BASIC mode
the SUPER and USER sections can be accessed both when executing at supervisor privilege level
and when executing at user privilege level.

When including user defined sections e.g. modules written in assembler, each of the compilers

program sections and the user defined sections must be specified to the linker as one of the RTS
program sections using the options -udat, -sdat, -ucst, -ucod and -scod.

6.9 The Initialization Module

The initialization module defines constants, allocates memory, and contains the code for
initialization of the processor and the RTS. The initialization module for a given target program
depends on the program attributes and the options given to the linker. The initialization module
is generated as an assembler file with the name <prefix>_init.src. The assembler is invoked to
produce the object file with the name <prefix>_init.obj. If the -keep option is used <prefix> is
the main unit name, otherwise <prefix> is the process identification (pid).

6.9.1 The Initialization Constants

The initialization module defines the following externally visible symbols which are constants used
by the run-time system.

Ada_INITS$DisplaySize
The size of the display vector in bytes. This symbol is always defined.
70

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker
Ada_INITSInterruptStackSize

‘The size of the interrupt stack in bytes. This symbol is defined when the -interrupt_stack option
is specified.

Ada_INIT$MainStackSize
The byte size of the stack for the main task. This symbol is always defined.
Ada_INITSMainHeapSize

The byte size of the heap for the main task. This symbol is defined when option -mode is
specified o SECURE or SAFE.

Ada_INITSDefault TimeSlice

The default time slice for tasks. The symbol defines an integer; the unit is in SYSTEM.TICKS.
The symbol is defined when the target program has the task attribute. If the NOTIME_SLICE
is specified, the value of the symbol is OxfIIfINIT.

Ada_INITSDefaultPriority

The default priority for tasks. The symbol is defined when the target program has the task
attribute.

Ada_INIT$MainPriority

The priority for the main task. The symbol is defined when the target program has the task
aribute.

Ada_INITSMainTimeSlice
The time slice for the main program. Same convention as Ada_INITSDefaultTimeSlice.
Ada_INITSDefaultStackSize

The stack size for tasks for which the 'STORAGE_SIZE is not applied."'l‘his symbol is only
defined if the target program has the task attribute.

Ada_INITSRTSStackUse
The amount of memory reserved on the stack of each task to be used by the RTS.

Ada_INITSMainFPUse
Specifies whether or not the main task may use the floating point co-processor or the 68040 FPU.
Ada_INITSTCBCount

The number of task control blocks allocated minus one. This symbol is only defined when the
target program has the task attribute.

n

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker

Ada_INITSITCBCount

The number of interrupt task control blocks allocated minus one. This symbol is only defined
when the target program has the interrupt attribute.

Ada_INITSSuperStackAreaSize
The size of the area to allocate supervisor stacks from, which

on user privilege level. This symbol is only defined when option -mode is specified to SECURE
or SAFE.

E
:
i

option -mode is specified to SECURE or SAFE.
Ada_INITSHeapHeaderCount
TMmberofheaphudemanouwdmmusme,Aheap.headermmapmmerwﬂnheap

Ada_INITSDefauitHeapSize

The size of the heap allocated for a task. This symbol is only defined when option -mode is
specified o SECURE or SAFE.

Ada_INITSPageSize

The logical/physical page size measured in number of bytes. This symbol is only defined when
option -mode is specified to SECURE or SAFE.

Ada_INITSPageWidth

The number of bits used as offset within a page, log 2 of page size. This symbol is only defined
when option -mode is specified to SECURE or SAFE.

Ada_INITSLogSegmentWidth

The number of bits used as offset within a segment. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

Ada_INITSMMUTIA

The Translation Control Register’s Table Index A value. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

DACS 680x0 Bare Ada Cross Compiler Sysiem - User’s Guide
The Ada Linker
Ada INITSMMUTIB

The Translation Control Register’s Table Index B value. This symbol is only defined when option
-mode is specified 1o SECURE or SAFE.

Ada_INITSMMUTIC

The Transiation Control Register’s Table Index C value. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

Ada_INITSMMUTID

The Translation Control Register's Table Index D value. This symbol is only defined when option
-mode is specified to SECURE or SAFE.

Ada_INITSTLMMFreeCount

The size of a table describing free logical memory within all active task groups. This symbol is
only defined when option -mode is specified to SECURE or SAFE.

6.92 Initialization Code

‘The initialization module contains code for initialization of the RTS components included in the
target program. The initialization steps are executed in the same sequence as they are listed. When
the initialization code is called, the interrupt priority level (IPL) mask in MC680x0 Status Register
is assumed to be 7 and the active stack is assumed to be the interrupt stack.

Initislization of the Interrupt Stack

The interrupt stack pointer is initialized. This initialization is only performed when the option
-interrupt_stack is specified.

Initialization of the Main Stack

The mode is changed to use the master stack pointer and the master stack pointer is initialized.
This initialization is only performed if option -main_task, keyword STACK_SIZE > 0. If option
-mode is set to SECURE or SAFE the supervisor main stack is initialized instead.
Initialization of the Interrupt Vector

The interrupt vector is either copied from the interrupt vector defined by the VBR register, or
initialized completely, depending on the -vector option. If the -novector option is specified the
interrupt vector is not initialized.

Initialization of the Virtual Memory Manager

If option -mode is set t0 SECURE or SAFE the Virtual Memory Manager is initialized. The
VMM initialization generates intemal data structures conceming free physical RAM memory
specifiecd by option -ram and free logical memory specified by option -logical_memory.
Furthermore, MMU tables are created for supervisor code mapping all code as read only, user

73

DACS 680x0 Bare Ada Cross Coupiler System - User's Guide
The Ada Linker

code mapping Ada code as read only, and supervisor data mapping all physical RAM memory as
specified with option -ram as read/write.

Initialization of Classes

Initialization of classes is performed if option -mode is set to SECURE or SAFE. For
a user data memory mapping table is gencrated. The table contains constants, stack,
permanent data for the class itself and data from other classes according to the rights
the class file in specified with option ~class_file.

Initialization of the 680x0 Interrupt Vector Entries

The interrupt vector entries for the 680x0 exceptions that are used by the RTS are initialized by
calling Ada_UCC_ESInitMPUIV (sec the Configuration Guide [DDC-b] for more details). This

!
H

The interrupt vector entries for the 6888x or 68040 FPU exceptions that are used by the RTS are
initialized by calling Ada_.UCC_F$itFPUIV (sec the Configuration Guide [DDC-b] for more
details). This initialization is only performed if -noexceptions has not been specified, and the
program has the float and exception handler attributes.
Initialization of the Storage Manager

The parameter list defining the memory available to the storage manager is created and the storage
manager is initialized. The storage manager is only initialized when the target program has the
heap atribute.

Initialization of Exception Handler

Initialization for pre-handlers is performed.

Initialization of the Timer

If the target program has the task attribute, the timer is initialized by calling
Ada_UCC_ASitTimer (see the Configuration Guide [DDC-b] for more details). The timer may
also be initialized when the package Calendar is included in the program, but that depends on the
implementation of package Calendar. The implementation supplied by DDC-I will use the timer.
User Specified Initialization Code

At this point, user specified initialization code is called. Please refer to Section 6.2.11 for details
on user specified initialization code.

Initlalization of Frame Heap

The permanent frame heap headers on the outermost level are initialized. A frame heap header is
a structure of heap elements at current block level.

Initialization of the Main Program

74

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker

Termination of the Main Task

Upon retum from the elsboration module, the main program must wait until all tasks have
terminated. If the target program has the task attribute, the routine in the tasking keme! terminating
the main program is called. If not, the only task (the main task) is already terminated and no
action is required.

Preparation for Termination of the Program

To ensure proper termination the IPL is raised to 7, the Master Stack will be the active stack
afterwards.

Invocation of User Defined Termination Code

Transfers control to the user supplied termination routine Ada_UCC_BS$Exit (see [DDC-b)). Please
refer w0 Section F.1.4 for details on user specified termination code (PRAGMA RUNDOWN).

6.9.3 Initialization

The initialize module allocates memory for the RTS data structures that depends on the target
program or on options to the linker. The following data areas are defined, and made addressable
by the symbols:

Ada_INITSInterruptVector

The address of the interrupt vector. This symbol is defined when the option -vector is specified.
If ADDRESS=<address> is specified an absolute section is created at <address>, the symbol is
equated to <address>, and 1024 bytes is allocated for the interrupt vector. If -novector is specified
the symbol is not defined and the memory not allocated.

Ada_INITSInterruptStack

The start address of the interrupt stack. This symbol is defined when the option -interrupt_stack
is specified. If START=<address> is specified an absolute section is created at <address>, the

75

DACS 630x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

i

is equated 10 <address> and the number of bytes specified with SIZE are reserved.
the interrupt stack is allocated in the RTS_DATA section by a DS directive.

ii

The start address of the main program stack. The symbol is defined when the option -main_task
is specified. If START=<address> is specified then the symbol is equated 0 <address> otherwise
the main stack is allocated in the RTS_DATA section by a DS directive.

The start address of the memory allocated for interrupt task control blocks. The memory is
allocated when the target program has the interrupt attribute.

Ada_INITSCurrITCB<interrupt-no>

One long word is allocated for each interrupt vector entry that the target program references.
Ada_INITSSuperStackArea

The start address of the area from which supervisor stacks are allocated. Only supervisor stacks
for tasks at user privilege level are allocated in this area. The memory is only allocated when the
option -mode is set to SECURE or SAFE.

Ada_INITS$TempHeap

The address of the memory for Frame heap header for allocation of temporary objects on the
outermost lexical level.

Ada_INITSHeapHeaderArea

The start address of the memory allocated for heap headers. The memory is only allocated when
the option -mode is set to SECURE or SAFE.

Ada_INITSFciTable
The start address of the memory allocated for the Function Code Lookup table used by the MMU.

The address must be 16 bytes aligned. The memory is only allocated when the option -mode is
set 10 SECURE or SAFE.

Ada_INIT$FreePageCount

76

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide

The Ada Linker
The address of the memory allocated for the number of free physical pages. The memory is only
aliocated when the option -mode is set to SECURE or SAFE.

Ada_INITS$FreeSegmentIndex

The address of the memory pointing at the next entry with a free segment in
Ada_INITSFreeSegmentTable. The memory is only allocated when the option -mode is set to
SECURE or SAFE.

Ada_INITSFreeSegmentTable

The start address of the memory allocated for the table of free logical memory segments. The
memory is only allocated when the option -mode is set to SECURE or SAFE.

Ada_INITSFreeSegmentTop

The address of the top of the free segment stack. The memory is only allocated when the option
-mode is set to SECURE or SAFE.

Ada_INIT$FreeSegmentStack

The start address of the memory allocated for the stack of deallocated segments. The memory is
only allocated when the option -mode is set to SECURE or SAFE.

Ada_INITSTLMMFreeArea
The start address of the memory allocated for the table describing the free logical memory within

all active task groups. The memory is only allocated when the option -mode is set to SECURE
or SAFE.

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker

610 The Elaboration Module

The elshoeation module is generated as an assembly file, and the assembler is invoked to produce
the actaal object module. The assembly file is named <prefix>_elab.src and the object file name
is <prefin>_slabebj.

The eclsboration module has the entry point Ada_ELABSEntry, which is invoked from the
initialization module by a branch.

6.141 BASIC Execution Mode
The elsboration module has the following structure, when -mode is set to BASIC:

NAME ADA_ELAB
CRIP <selected cpu>

XDEF Ada_ELABSEntry
XREF Ada_INITS$ElabExit
XREF M$<main_unit_no>_1
XDEF R$<unit_no_1>_0
XREF M$<unit_no.1>_0
XDEF R$<unit._no.2>_0
XREF M$<unit.no_2>_0

SECTION ADA_CODE

Ada_ELABSEntry: bra.l M$<unit_no.1>_0
R$<unit_no_1>_0: bra.l M$<unit_no.2>_0
R$<unit.no.2>_0:

bsr.l M$<main_unit_no>.1
moveq.l #0,d0
bra.l Ada_INIT$ElabExit

The elavoration module branches to the elaboration for each of the included compilation units, and
the elaboration code will branch back to the elaboration module. The elaboration code for a
compilation unit will be identified by the label M$<unit_no>_0 where <unit_no> is the unit
number of the compilstion unit. The retum point is identified by the label R$<unit_no>_0.

6.10.2 SECURE and SAFE Execution Mode

When linking with option -mode set to SECURE or SAFE, the elaboration module has the
following structure: -

78

DACS 680x0 Bare Ada Cross Compiler Sysiem - User's Guide
The Ada Linker

ADA_ELAB
CHIP <selected cpu>

XDEF Ada_ELABSEntry
XREF Ada_INITSElabExit
XREF MS$<main.unit_no>_1
XREF Ada_TK _XS$Elaborate
XREF Ada_TK_X$CallMain
XREF
XREF
XREF

Ada_INIT$MainClass
N$<class_name_1>
N$<class_name_2>

XDEF R$<unit_no.1>_0
XREF M$<unit_no.1>_0
. XDEF R$<unit_no_2>_0
XREF M$<unit.no_2>_0

SECTION ADA_CODE

Ada_ELABSEntry: lea.l N$<class_name>, a0
lea.l M$<unit.no>-1,al
bsr.l Ada_TK_XS$Elaborate

lea.l N$<class_name>, a0
lea.l M$<unit_no>-1, ai
bsr.1 Ada_TK_XSElaborate

lea.l N$<class_name>, a0
lea.l M$<main._unit_no>_1
moveq.l #0,d0

bsr.l AdaTK_XSCallMain
lea.l Ada_INITS$ElabExit, a0
mveq.l #0,d0

moveq.l #1,d7

trap #13

R$<unit_no_1>_0:
R$<unit_no_2>_0:

cea

R$<unit_no_<u>>_0: moveq.l #0,d7
trap #13
END

The elaboration of each compilation unit is handled by Ada_TK_X$Elaborate which takes a class
mmcmdanehbomioncodelabelM8<unit_no>_o.‘l‘hetemmpoimisidemiﬁedbyﬂnlabel
R$<unit_no>_0. The elaboration of each compilation unit runs at user privilege level, but the
mpfaﬂwehbalﬂmofeldwompﬂaﬂmunitmustnmatmpcwisorpﬁvﬂegelevel.Toswitch
from user privilege level to supervisor privilege level a trap operation is executed, and the
elaboration of the ne.:» unit will proceed.

79

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
The Ada Linker

program is identified by the Iabel M$<main_unit_no>_1. If the main program retums, register
d0 is cleared to signal successful completion, and control is passed back to the initialization

note that all transfers of control between the initialization module, the elaboration module,
and the elaboration code is implemented by branch instructions. The branch instructions are used
because the elaboration code may allocate objects on the stack, and consequently stack balance
cannot be assumed.

6.11 Linker Examples

This section contains a number of linker examples. It is assumed that the compilation unit example
is compiled into the default program sublibrary, that the environmental variable 2DA_LIBRARY
has been equated to the default sublibrary and that the environmental variable ADA_UCC has
been equated to an User Configurable Code Library suitable for the target board on which the

linked program will be executed. DDC-I provides UCC libraries for the Radstone CPU-3A and the
Motorola MVME133, MVME143 and MVME165 boards.

Example: 1

$ al -noheap example
The program will start at address 0x10000, and the heap is not initialized. If the target program
has the heap attribute an error message is issued.

Example: 2
$ al -ram 0x10000, Oxfffff example

The program will start at address 0x10000, and the heap will be placed within the address range
0x10000 to Oxfffff. This is the simplest form of a link that will support all Ada constructs.
Example: 3

$ al -ram _base 0x4000 -ram 0x0,0xfffff example

The program will start at address 0x4000, and the heap will be placed within the address range
0x4000 to Oxfffff. Physical memory below address 0x4000 is not used.

DACS 680x0 Bare Ada Cross Compiler System - User’s. Guide
The Ada Linker

Example: 4

$ al -rom_sections SUPER_CODE, USER_CODE, USER_CODE\
~ram_sections SUPER_DATA, USER_DATA\
-rom 0x200000, 0x2££££f -rom_base 0x200000\
-ram 0x0,0xfffff -ram base 0x0 example

‘The sections SUPER_CODE, USER_CODE and USER_CONS are placed in ROM from address
0x200000. The sections SUPER_DATA and USER_DATA are placed in RAM from address
0x0. The part of the address range 0x0 to Oxfffff not used by the SUPER_DATA section is used
as heap space.

Example: §

$ al -rom_sections SUPER_CODE -rom_base 0x200000\
-ram_sections SUPER_DATA -ram base 0x0\
-gcod RTS_CODE,ADA_CODE,ADA_CONS\
-noucod -noucst -vector INIT -boot)\
-ram 0x0,0xff£££ff -rom 0x200000,0x2f£fff example

As example 4 but a module containing reset information is produced. The reset address is
0x200000. The interrupt vector is completely initialized. The first two long words of section
RTS_CODE contains the initial PC and the initial interrupt stack pointer, consequently
RTS_CODE must be the first section to load in order to control the reset address.

Example: 6

$ al —ram 0x10000, Ox££££f\
-vector ADDRESS=0x70000, COPY\
-interrupt_stack START=0x70000,SIZE=0x8000\
-main_task STACK_START=0x68000, STACK_SIZE=0x8000,\
PRIORITY=3, TIME._ SLICE=(0.2, FLOAT\
~task_defaults STACK_SIZE=0x8000, PRIORITY=4, \
TIME_SLICE=0.1 example

The start address of the program is Ox10000. The interrupt vector has the address 0x70000 and
is a copy of the interrupt vector defined when the Ada program gains control. The interrupt stack
has start address at 0x70000 and the size 0x8000. Please note that the first byte used in the stack
is Ox6fTIT and the stack grows by decrementing the stack pointer (stack grows "down" in memory).
The main program stack’s start address is 0x68000, and the size is 0x8000, the main program
has a priority of 3 if pragma priority does not apply, the time slice is 0.2 seconds and the main
program uses the floating point co-processor. The defaults used for task stack size is 0x8000, a
priority of 4 and a time slice of 0.1 second.

81

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
The Ada Linker

Example: 7
$ al -init_file my_file.src -option_file my_file.opt example

The linker was not able to generate an adequate initialization and option file, and the user decided
to use his own. The my-_flle.src file contains the assembly source for the initialization module,
and the my_file.opt contains the option file for the link. With this form of link the user has full
control over the option file and the initialization module.

Example: 8

$ al -mode SECURE -class_file example.cls\
-ram 0x10000, Ox£L££L£L\

-mmu_details SEGMENT_SIZE=16, PAGE_SIZE=10,\
TIA=8, TIB=8, TIC=6 example

Execution of the program will be in SECURE mode. The class specification is in the file
example.cls. Heaps and dynamic allocated stacks will be placed in address range 0x10000 to
Ox{ffif. The MMU Translation Control Register is setup with a page size of 1K bytes, and TIA
=8, TIB = 8, TIC = 6, TID = 0, each class gets 64K bytes of logical memory for heaps and
stacks.

82

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is
type SHORT_INTEGER is range -32_768 .. 32_767;
type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6
range -3.4028234666385E+38 .. 3.4028234666385E+38;

type LONG_FLOAT is digits 15
range —-1.7976931348623157E+308 .. 1.7976931348623157E+308;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131 _071.9;
end STANDARD;

APPENDIX F - IMPLEMENTATION DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics of DACS-680x0 required in
Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas
This section describes all implementation defined pragmas.

F1.1 PRAGMA INTERFACE_SPELLING

Format: pragma INTERFACE_SPELLING(<subprogram-name>, <string>)
Placement: The pragma may be placed as a declarative item.

Restrictions: Pragma INTERFACE_SPELLING must be applied to the subprogram denoted
by <subprogram-name>. The <string> must be a string literal.

This pragma allows an Ada program to call routines with a name that is not a legal Ada name,
the <string> provides the exact spelling of the name of the procedure.

F1.2 PRAGMA INTERFACE_TRAP
| Format: pragma INTERFACE_TRAP(<subprogram-name>, <string>, <integer>)
‘ Placement: The pragma may be placed as a declarative item. -

Restrictions: The <subprogram-name> must denote a procedure or a function for which pragma
interface to AS has been applied. The <string> must be a string literal. The
<integer> must be greater than 3.
The pragma allows the programmer to implement assembler routines that need access to the run-
time system code or data in a link mode independent manner. The string literal is used as the
| name for a global linker symbol, when the linker implements the call to the user supplied
subroutine. The string literal must be unique when linking a program containing calls to
| subprograms for which INTERFACE_TRAP is applied. The integer is used as an index to the
| table of entry points in the kerne! and must likewise be unique. When the integer is chosen, please
consult the package RTS_TRANSFER_INDICES (see appendix C.8) to avoid conflicts with the
indices used by the run-time system and support packages.

\ When control is passed to the user supplied routine register A4 contains the value of the

| stackpointer prior to the call; A4 is the only way to access parameters for the routine. The routine
must maintain stack balance and must retum by a RTS.

173

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

For a program linked with the SECURE or SAFE mode it is checked that the task executing the
routine has the "change mode to supervisor” privilege. The check is performed before control is
passed to the user supplied routine.

F1.3 PRAGMA INITIALIZE

Format: pragma INITIALIZE(<string_literal>)

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

-When the pragma is applied the linker will, as part of the initialization code generate a call to the
subprogram with the name <string-literal>. The call will be performed before the elaboration of
the Ada program is initiated, with the interrupt mask in the Status Register at 7. If several
pragmas INITIALIZE are applied to the same program the routines are called in the elaboration
order, if several pragmas INITIALIZE are applied to one compilation unit the routines are called

in the order of appearance. If several compilation units apply pragma INITIALIZE to the same
routine the routine is only called once.

F1.4 PRAGMA RUNDOWN

Format: pragma RUNDOWN(<string_literal>)

Placement: The pragma may be placed as a declarative item.
Restrictions: None.

Similar to pragma initialize, but the subprogram is called after the main program have terminated
and in the reverse order of the elaboration order.

F1.5 PRAGMA TASKS

Format: pragma TASKS;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the task attribute. If the code that is interfaced by a pragma

INTERFACE uses any tasking constructs, the "ation unit must be marked such that the
linker includes the tasking kemel in target progr it reference the compilation unit.

174

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics
F1.6 PRAGMA FLOATS
Format: pragma FLOATS;
Placement: The pragma may be placed as a declarative item.
Restrictions: None.
Marks the compilation unii with the float auribute. If the code that is interfaced by a pragma
INTERFACE uses any floating point co-processor instructions, the compilation unit must be

marked such that the linker includes initialization of the floating point co-processor in target
programs that reference the compilation unit.

F1.7 PRAGMA INTERRUPTS

Format: pragma INTERRUPTS;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation nnit with the interrupt attribute. If the code that is interfaced by a pragma

INTERFACE uses any interrupts, the compilation unit must be marked such that the linker
include the interrupt handling in target programs that reference the compilation unit.

F1.8 PRAGMA STORAGE » -AAGER

Format: pragma STORAGE_MANAGER;

Placement: The pragma may be placed as a declarative item.

Restrictions: None.

Marks the compilation unit with the heap attribute. If the code that is interfaced by a pragma

INTERFACE uses the storage manager, the compilation unit must be marked such that the linker
include initialization of the storage manager in target programs that reference the compilation unit.

F1.9 PRAGMA INTERRUPT_HANDLER
The pragma INTERRUPT_HANDLER s defined with two formats.

175

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

F1.9.1 PRAGMA INTERRUPT_HANDLER for Task Entries
Format: pragma INTERRUPT_HANDLER;

Placement: The pragma must be placed as the first declarative item in the task specification that
it applies to.

Restrictions: The task for which the pragma INTERRUPT_HANDLER is applied must fulfill
the following requirements:

1) The pragma must appear first in the specification of the task and an address clause must
be given to all entries defined in the task, see below.

task fih is

- pragma interrupt_handler;
entry handlerl;
for handlerl use at 254;
entry handler2;
for handler2 use at 255;
end fih;

2) All entries of the task must be single entries with no parameters.
3) The entries must not be called from any tasks.
4) No other tasks may be specified in the body of the task.

5) The body of the task must consist of a single sequence of accept statements for each of the
defined interrupts, see below:

task body fih is
-- local simple data declaration, no tasks.
begin
accept handlerl do
<statementlist>;
end handlerl;
accept handler2 do
<statementlist>;
end handler2;
end fih;

6) The only tasking construct that may be used from the body of an accept statement is
unconditional entry calls. Several unconditional entry calls may appear in the body of an
accept statement but only one entry call must be made during the handling of the interrupts.

7) Any procedures called from the accept body may not use any tasking constructs at all.

8) A given entry must only be accepted once within the body of an FIH.

9) No exceptions may be propagated out of the task body.

If the restrictions described above are not fulfilled, the program is erroneous and the result of the

execution unpredictable. The compiler cannot and is not checking all the restrictions, but attempts
to perform as many checks of the requirements as possible.

176

DACS 680x0 Bare Ada Cross Compiler Sysiem - User's Guide
Implementation Dependent Characteristics

The pragma INTERRUPT_HANDLER with no parameters allows the user to implement
immediate response to exceptions.

F192 PRAGMA INTERRUPT_HANDLER for Procedures
Format: pragma INTERRUPT_HANDLER (procedure-name,integer-literal);

Placement: The pragma must be placed as a declarative item, in the declarative pan,
immediately after the procedure specification.

Restrictions: The procedure for which pragma INTERRUPT_HANDLER applies must fulfill the
following restrictions:

1) The pragma must appear before the body of the procedure.

2) The procedure must not be called anywhere in the application.

3) No tasks may be declared in the body of the procedure.

4) The only tasking construct that may be used from the body of the procedure is
unconditional entry calls. Several unconditional entry calls may appear in the body of the
procedure, but only one entry call may be made during the handling of the interrupt.

S) Any subprograms called from the procedure must not use any tasking constructs at all.

6) The procedure must have no parameters.

7) No exceptions may be propagated out of the procedure.

If the restrictions described above is not fulfilled the program is ermmoneous and the result of the
execution unpredictable. The compiler cannot and is not checking all the restrictions, but attempts
to perform as many checks of the requirements as possible.

The pragma INTERRUPT_HANDLER for procedures defines the named subprogram to be an
interrupt handler for the interrupt vector entry defined by the integer-literal.

F1.10 PRAGMA NO_FLOATING_POINTS
Format: pragma NO_FLOATING _POINTS task-id)

Placement: The pragma must be placed as a declarative item, in the declarative part, defining
the task type or object denoted by the task-id.

Restrictions: The task(s) denoted by the task-id must not execute floating-point co-processor

instructions.
This pragma informs the compiler and run-time system that the task will not execute floating point
co-processor instructions. Consequently the context switch needs not save and restore the state of
the floating point co-processor yielding improved performance.

177

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Impiementation Dependent Characteristics

FL11 PRAGMA SUPERVISOR_.TASK

Format: pragma SUPERVISOR_TASK

Placement: The pragma must be placed immediately after the task declaration of the task
declaring it as a SUPERVISOR_TASK.

Restrictions: The pragma has no meaning if linking with BASIC mode.
This pragma informs the compiler and run-time system that the task shall execute at the supervisor

privilege level, all other tasks will execute at user privilege level when linking with SECURE or
SAFE mode. In BASIC mode all tasks execute at the supervisor privilege level.

F1.12 PRAGMA ACCESS_TYPE_RETAIN_HEAP
Format: pragma ACCESS_TYPE_RETAIN_HEAP

Placement: The pragma must be placed as a declarative item in the declarative part, immediately
after the procedure specification.

Restrictions: The pragma can only be used when linking in BASIC mode.

This pragma suppresses garbage collection of access types, when leaving the scope of the access
type declaration.

F.2 Implementation-Dependent Attributes
No implementation-dependent attributes are defined.

178

DACS 680x0 Bare Ada Cross Compiler System - User's Guide

Implementation Dependent Characteristics

F.3 Package SYSTEM

package SYSTEM is
type ADDRESS is new INTEGER;
subtype PRIORITY is INTEGER range 1 .. 24;
type NAME is (DACS_680X0);
SYSTEM_NAME : constant NAME := DACS_680X0;
STORAGE.UNIT: constant 1= 8;
MEMORY_SIZE: constant = 2814E32;
MIN_INT: constant swm =2_.147_483_648;
MAX_INT: constant = 2.147_483.647;
MAX_DIGITS: constant = 15;
MAX_MANTISSA: constant = 31;
FPINE_DELTA: constant = 23#1.08E-31;
TICK: constant = 241.04E-14;

type interface_language is (AS,C):

end SYSTEM;

The basic clock period SYSTEM.TICK is not utilized by DACS-680x0. The real time between
cach successive timer tick will be a muitiplum of SYSTEM.TICK, but the actual time between
each timer tick depends on a given target board and is specified in the User Configurable Code
(UCC).

FA4 Representation Clauses

The DACS-680x0 fully supports the 'SIZE representation for derived types. The representation
clauses that are accepted for non-derived types are described in the following subsections.

F4.1 Length Clause

Some remarks on implementation dependent behavior of length clauses are necessary:

* When using the SIZE attribute for discrete types, the maximum value that can be specified
is 32 bits.

» SIZE is only obeyed for discrete types when the type is a part of a composite object, e.g.
arrays or records.

e Using the STORAGE_SIZE attribute for a collection will set an upper limit on the total
size of objects allocated in this collection. If further allocation is attempted, the exception
STORAGE_ERROR is raised.

e When STORAGE_SIZE is specified in a length clause for a task, the process stack area
will be of the specified size.

179

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics
F4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of INTEGER 'FIRST
+ LINTEGER'LAST - 1.

F4.3 Record Representation Clauses
When representation clauses are applied to records the following restrictions are imposed:

« If the component is a record or an unpacked array, it must start at a storage unit boundary
(8 bits).

-A record occupies an integral number of storage units (words) (even though a record may
have fields that only define an odd number of bytes).

e A record may take up a maximum of 2 giga bits.

e A component must be specified with its proper size (in bits), regardless of whether the
component is an array or not.

e [If a non-amay component has a size which equals or exceeds one storage unit 32-bits the
component must start on a storage unit boundary.

e The clements in an array component should always be wholly contained in 32-bits.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses are not otherwise utilized by the compiler.

Pragma PACK on a record type will attempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the small scalar components and
larger components will follow in the order specified in the record. The packing begins at the first
storage unit after the components with representation clauses.

F4.3.1 Alignment Clauses
Alignment clauses for records are impiemented with the following characteristics:

« If the declaration of the record type is done at the outermost level in a library package, any
alignment is accepted, otherwise only longword alignments are accepted.

e Any record object declared at the outermost level in a library package will be aligned
according to the alignment clause specified for the type. Record objects declared elsewhere
can only be aligned on a longword boundary. If the record type is associated with a
different alignment, an emor message will be issued.

« If a record type with an associated alignment clause is used in a composite type, the
alignment is required to be longword: an crror message is issued if this is not the case.

180

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

7.5 Implementation-Dependent Names for Implementation-Dependent Components

None defined by the compiler.

F& Address Clauses

This section describes the implementation of address clauses and what types of entitics may have
their address specified by the user.

F6.1 Objects

Address clauses are supported for scalar and composite objects whose size can be determined at
compile time if the address is specified.

F6.2 Task Entries
Address clauses arc supported for task entries. The following restrictions applies:
+ The affected entries must be defined in a task object only, not a task type.
e The entries must be single and parameteriess.
« The address specified must not denote an interrupt index which the processor may trap.

o If the interrupt entry executes floating point co-processor instructions the state of the
co-processor must be saved prior to execution of any floating point instructions, and restored
before the retumn.

‘The address specified in the address clause denotes the interrupt vector index.

F.7 Unchecked Programming

Both UNCHECKED_DEALLOCATION and UNCHECKED_CONVERSION are supporied as
indicated below.

F7.1 Unchecked Deallocation

Unchecked deallocation is fully supported through the procedure UNCHECKED..DEALLOCATION
as defined in {DoD-83] 13.10.1.

181

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

F7.2 Unchecked Conversion

Unchecked conversion is fully supported through the procedure UNCHECKED_CONVERSION as
defined in [DoD-83] 13.10.2. Unchecked conversion is only allowed between objects of the same
"size”. However, if a scalar type have different sizes (packed and unpacked), unchecked conversion
between such a type and another type is accepted if either the packed or the unpacked size fits
the other type.

F.3 Input/Output Packages

In many embedded systems, there is no need for a traditional I/Q system, but in order to support
testing and validation, DDC-I has developed a small terminal oriented VO system. This I/O system
consists essentially of "EXT_IO adapted with respect to handling only a terminal and not file /O
(file YO will cause a USE_ERROR to be raised) and a low level package called
TERMINAL_DRIVER. A BASIC_1I0 package has been provided for convenience purposes,
forming an interface between TEXT_IO and TERMINAL_DRIVER as illustrated in the following
figure.

TEXT_IO
BASIC._IO
TERMINAL._DRIVER
(H/W interface)

Figure F.1:

The TERMINAL_DRIVER package is the only package that is target dependent, i.e., it is the
only package that need be changed when changing communications controllers. The actual body
of the TERMINAL_DRIVER is written in assembly language, but an Ada interface to this body
is provided. A user can also call the terminal driver routines directly, i.e. from an assembly
language routine. TEXT_10 and BASIC_IO are written completely in Ada and need not be
changed.

BASIC_IO provides a mapping between TEXT_IO control characters and ASCII as follows:

TEXT_..IO ASCII Character
LINE_TERMINATOR ASCII.CR
PAGE_TERMINATOR ASCII.FF
FILE_TERMINATOR ASCII.EM (ctrl 2)
NEW_LINE ASCII.LF

Table F.1: Mapping between TEXT-IO and ASCII

182

R I ety ottt

]
h

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics
The services provided by the terminal driver are:
1) Reading a character from the communications port.
2) Writing a character to the communications port.

F8.1 Package TEXT_IO

The specification of package TEXT_IO:
pragma page;

with BASIC_IO;

with IO_EXCEPTIONS;
package TEXT_IO is

type FILE_TYPE is limited private;
type FILE_MODE is (IN_FILE, OUT_FILE);

type COUNT is range 0 .. INTEGER'LAST;
subtype POSITIVE_CHOUNT is COUNT range 1 .. COUNT’LAST:

UNBOUNDED: constant COUNT:= 0; -- line and page length
-- max. size of an integer output field 2#....#
subtype FIELD is INTEGER range 0 .. 35;

subtype NUMBER_BASE is INTEGER range 2 .. 16;

type TYPE._SET is (LOWER_CASE, UPPER_CASE);

183

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

pragma PAGE;
-- File Management

procedure CREATE (FILE in out FILE_TYPE;

MODE : in FILE.MODE :=QUT_FILE;
NAME : in STRING smnY,
FORM : in STRING st

):

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING s

procedure CLOSE (FILE
procedure DELETE (FILE
procedure RESET (FILE

MODE
procedure RESET (FILE

in out FILE_TYPE);
in out FILE_TYPE):
in out FILE_TYPE;
in PILE_MODE);

in out FILE_TYPE):;

function MODE (FILE
function NAME (FILE
function FORM (FILE

in FILE_TYPE) return FILE_MODE;
in FILE_TYPE) return STRING;
in FILE_TYPE) return STRING; -

function IS_OPEN(FILE

in FILE_TYPE return BOOLEAN;

pragma PAGE;
=~ control of default input and output files

procedure SET_INPUT (FILE
procedure SET_OUTPUT (FILE

: in FILE.TYPE):
: in FILE.TYPE);
function STANDARD_INPUT return FILE_TYPE;
function STANDARD.OQUTPUT return FILE_TYPE;

function CURRENT.INPUT return FILE_TYPE;

function CURRENT_OUTPUT return FILE_TYPE;
pragma PAGE;
-~ specification of line and page lengths

procedure SET_LINE_LENGTH (FILE : in FILE_TYPE;
TO : in COUNT);
procedure SET.LINE_LENGTH (TO : in COUNT):;

procedure SET.PAGE_LENGTH (FILE : in FILE_TYPE;
TO : in COUNT);
procedure SET_PAGE_LENGTH (TO : in COUNT):;

function LINE_LENGTH (FILE : in FILE_TYPE)
return COUNT;
function LINE_LENGTH return COUNT;

function PAGE.LENGTH (FILE : in FILE_TYPE)
return COUNT;

function PAGE_LENGTH return COUNT;
184

T I R R R R R R R R R R R R R R R T .S

pragma PAGE;
== Column,

procedure
procedure
procedure
procedure

function
function

procedure
procedure

procedure
procedure

function
function

function
function

procedure

procedure

procedure

procedure

function

function

function
function

function

function

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
Impiementation Dependent Characteristics

Line, and Page Control

NEW_LINE (FILE :

in FILE_TYPE;

SPACING : in POSITIVE_COUNT := 1);
NEW_LINE (SPACING :

return BOOLEAN

.
’

.
’

return BOOLEAN

return BOOLEAN:;

in POSITIVE_COUNT := 1);
SKIP_LINE (FILE : in FILE_TYPE;
SPACING : in POSITIVE_COUNT := 1);

SKIP_LINE (SPACING : in POSITIVE_COUNT :
END_OF_LINE (FILE : in FILE_.TYPE) return BOOLEAN;
END_OF_LINE H
NEW_PAGE (FILE : in FILE_TYPE):;
NEW_PAGE;
SKIP_PAGE (FILE : in FILE_TYPE);
SKIP_PAGE:
END.OF_PAGE (FILE : in FILE.TYPE) return BOOLEAN
END_OF _PAGE
END.OF_FILE (FILE : in FILE.TYPE) return BOOLEAN:
END_OF_FILE
SET._COL (FILE : in FILE_TYPE;

TO : in POSITIVE.COUNT):;
SET_-COL (TO : in POSITIVE.COUNT):;
SET_LINE (FILE : in FILE._TYPE:

TO : in POSITIVE._COUNT):;
SET_LINE (TO : in POSITIVE_COUNT):;
COL (FILE : in FILE_TYPE)

return POSITIVE_COUNT;
CoL return POSITIVE_COUNT:
LINE (FILE : in FILE_TYPE)

return POSITIVE_COUNT;
LINE return POSITIVE_COUNT;
PAGE (FILE : in FILE_TYPE)

return POSITIVE_COUNT;
PAGE return POSITIVE_COUNT;

185

pragma PAGE:

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

-=- Character Input-Qutput

procedure
procedure

procedure
procedure

-- String
procedure
procedure
procedure
procedure

praocedure

procedure

procedure

procedure

GET (FILE : in FILE_TYPE; ITEM : out CHARACTER):
GET | ITEM : out CHARACTER):
PUT (FILE : in FILE_.TYPE; ITEM : in CHARACTER):
PUT (ITEM : in CHARACTER):
Input~-OQutput
GET (FILE : in FILE_TYPE; ITEM : out CHARACTER):
GET { . ITEM : out CHARACTER):
PUT (FILE : in FILE_TYPE; ITEM : in CHARACTER);
PUT (ITEM : in CHARACTER):
GET.-LINE (FILE : in FILE_TYPE;

ITEM : out STRING;

LAST : out NATURAL):;

GET.LINE (ITEM
LAST

out STRING;
out NATURAL);

PUT_LINE (FILE
ITEM

PUT._LINE (ITEM

in FILE.TYPE;
in STRING):
in STRING):

186

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

pragma PAGE:;

-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;
package INTEGER.IO is

DEFAULT_WIDTH : FIELD := NUM’WIDTH:;
DEFAULT.BASE : NUMBER.BASE := 10;
procedure GET (FILE : in FILE_TYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);
procedure GET (ITEM : out NUM;
WIDTH : in FIELD := 0);
procedure PUT (FILE : in FILE_TYPE;
ITEM : in NUM;
WIDTH : in FIELD := DEFAULT.WIDTH;
BASE : in NUMBER_BASE := DEFAULT_BASE):
procedure PUT (ITEM : in NUM;
WIDTH : in FIELD := DEFAULT_WIDTH.
BASE : in NUMBER_BASE := DEFAULT_BASE);
procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);
procedure PUT (TO : out STRING;
ITEM : in NUM;
BASE : in NUMBER_BASE := DEFAULT_BASE):;

end INTEGER_-IO;

187

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics
pragma PAGE:
-- Generic Packages for Input-Output of Real Types
generic

type NUM is digits <>;
package FLOAT_IO is

DEFAULT.FORE : FIELD := 2;
DEFAULT_AFT : FIELD := NUM’DIGITS - 1;
DEFAULT_EXP : FIELD := 3;

procedure GET (FILE in FILE_TYPE;

ITEM : out NUM;

WIDTH : in FIELD := 0);
Procedure GET (ITEM : out NUM;

WIDTH : in FIELD := 0);

procedure PUT (FILE in FILE_TYPE;

ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP):
procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);
procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVZ):
procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT_AFT;
EXP : 4in FIELD := DEFAULT_EXP):

end FLOAT_IO;

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

pragma PAGE;
generic

type NUM is delta <>;
package FIXED_10 is

DEFAULT.FORE : FIELD := NUM’'FORE;
DEFAULT_AFT : FIELD := NUM'AFT;
DEFAULT_EXP : FIELD := 0;

procedure GET (FILE in FILE_TYPE;

ITEM : out NUM;

WIDTH : in FIELD := 0);
procedure GET (ITEM : out NUM;

WIDTH :

in FIELD := 0);

procedure PUT (FILE in FILE_TYPE;

ITEM : in NUM;
FORE : in FIELD := DEFAULT._FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);
procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULT.FORE;
AFT : in FIELD := DEFAULT._AFT;
EXP : in FIELD := DEFAULT_EXP):;
procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE):;
procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

end FIXED.IO;

189

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
Implementation Dependent Characteristics

pragma PAGE;

-- Generic Package for Input-Output of Enumeration Types

generic

type ENUM is (<>);
package ENUMERATION_IO is

DEFAULT_WIDTH
DEFAULT_SETTING

-
.
»
.

FIELD
TYPE.SET

:= 0;
:= UPPER_CASE;

procedure GET (FILE : in FILE_TYPE; ITEM : out ENUM);
procedure GET (ITEM : out ENUM);
procedure PUT (FILE : FILE.TYPE;
ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT.WIDTH;
SET : in TYPE_SET := DEFAULT_SETTING) ;
procedure PUT (ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT_WIDTH;
SET : in TYPE_SET := DEFAULT_SETTING) ;
procedure GET (FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);
procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPE_SET := DEFAULT_SETTING);
end ENUMERATION.IO;
pragma PAGE;
-- Exceptions
STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;
LAYOUT_ERROR : exception renames IO_EXCEPTIONS.LAYOUT_ERROR;
pragma page;
private

type FILE_TYPE is

record

FT : INTEGER := -~1;

end record;

end TEXT_.IO;

190

DACSWBmMaCmssCompﬂerSystem User’s Guide
Implementation Dependent Characteristics

F8.2 Package I0_EXCEPTIONS
‘The specification of the package IO_EXCEPTIONS:

package IO_EXCEPTIONS is

STATUS.ERROR : exception;
MODE_.ERROR : exception;
NAME_ERROR : exception;
USE_ERROR : exception;
DEVICE_ERROR : exception;
END_ERROR : exception;
DATA_ERROR : exception;
LAYOUT_ERROR : exception;

end IO_EXCEPTIONS;

F8.3 Package BASIC_10
The specification of package BASIC_IO:

with IO_EXCEPTIONS;

package BASIC_IO is

type count is range 0 .. integer’last;

subtype positive_count is count range 1 .. count’last;

function get._integer return string:;

-- Skips any leading blanks, line terminators or page terminators.

-- Then reads a plus or a minus sign if present, then reads according
-- to the syntax of an integer literal, which may be based.

-- Stores in item a string containing an optional sign and an integer
-- litteral.

-- The exception DATA_ERROR is raised if the sequence ofcharacters dces
-- not correspond to the syntax described above.

-~ The exception END_ERROR is raised if the file terminator is read.
-- {(This means that the starting sequence of an integer has not been met)

-- Note that the character terminating the operation must be available
-- for the next get operation.

191

DACS 630x0 Bare Ada Cross Compiler System - User’s Guide
Implementation Dependent Characteristics

function get.real return string;

-= Corresponds to get_integer except that it reads according to the
-~ gyntax of a real literal, which may be based.

function get_enumeration return string;

-=- Corrxesponds to get.integer except that it reads according to the
~-- syntax of an identifier, where upper and lower case letters are
-=- gquivalent to a character literal including the apostrophes.

function get.item(length : in integer) . return string;

-- Reads a string from the current line and stores it in item;
-~ 1f the remaining number of characters on the current line is
-=- less than length then only these characters are returned.

-- fthe line terminator is not skipped.

procedure put_item(item : in string);

-= If the length of the string is greater than the current maximum line
linelength the exception LAYOUT_ERROR is raised.

-~ If the string does not fit on the current line a line terminator is
-=- output. Then the item is output.

-- Line and page lengths - ARM 14.3.3.

procedure set_line_length(to : in count) ;
procedure set_page_length(to : in count);
function line_length return count;

function page_length return count;

:: Operations on columns, lines and pages - ARM 14.3.4.
procedure new_line;

procedure skip_line;

function end_of_line return boolean;

procedure new.page;

procedure skip._page;

192

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
Implementation Dependent Characteristics

function end_of_page return boolean;
function end.of_file return boolean;

procedure set_col(to : in positive_count);
procedure set.line(to : in positive_count);
function col return positive_count;

function line return positive_count;

function page return positive_count;

-~ Character and string procedures.
-- Corresponds to the procedures defined in ARM 14.3.6.

procedure get.character(item : out character);

procedure get_string(item : out string):

procedure get_line(item
last

out string;
out natural);

procedure put.character(item : in character);
procedure put.string(item : in string):

procedure put_line(item : in string);

-~ axceptions:

USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;
LAYOUT_ERROR : exception renames IO_EXCEPTIONS.LAYOUT_ERROR;

end BASIC.IO;

193

DACS 680x0 Bare Ada Cross Compiler System - User's Guide:

F8.4 Package TERMINAL_DRIVER
The specification of package TERMINAL_DRIVER:

package terminal._driver is

procedurs put-character(ch : character);
proceduze flush;

function get.character return character;
procedure purge;
private

pragma interface (AS, put_character):;
pragma interface_spelling(put.character, “Ada_UCC_G$PutByte");

pragma interface (AS, get._character);
pragma interface_spelling(get._character, “"Ada_UCC_G$GetByte"):;

pragma interface (AS, flush):;
pragma interface._spelling(flush, "Ada_.UCC_G$FlushOutput");

pragma interface (AS, purge);
pragma interxface.spelling(purge, “Ada.UCC_G$PurgeInput®”);

pragma initialize ("Ada.UCC_GSInitIO");
pragma rundown (“Ada.UCC_G$CloselO");

end terminal_driver;

F8.5 Package SEQUENTIAL_IO
As files are not supported, the subprograms in this package will raise USE_ERROR or
STATUS_ERROR. The specification of package SEQUENTIAL _10:

-- Source code for SEQUENTIAL_IO
pragma PAGE;
with IO_EXCEPTIONS;

generic

type ELEMENT_TYPE is private;

194

DACS 680x0 Bare Ada Cross Compiler System - User's Guide

Implementation Dependent Characteristics

package SEQUENTIAL_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE,

pragma PAGE;
== PFile management

procedure CREATE(FILE
MODE
NAME
FORM
procedure OPEN (FILE
MODE

NAME
FORM

procedure CLOSE (FILE
procedure DELETE(FILE

procedure RESET (FILE
MODE

procedure RESET (FILE
function MODE (FILE
function NAME (FILE
function FORM (FILE

function IS_OPEN(FILE

pragma PAGE;

-=- input and output operations

procedure READ (FILE
ITEM

procedure WRITE (FILE
ITEM

.

in
in
in

an

in
in

'3

in

in

in

in
in

in

in

in
in

function END.OF.FILE(FILE

OUT_FILE);

out FILE_TYPE;

FILE.MODE = OUT_FILE;
STRING H B
STRING A ¥

out FILE_TYPE;
FILE_MODE;

STRING;
STRING := *");

out FILE_TYPE):;
out FILE_TYPE):

out FILE._TYPE;
FILE_MODE) ;

out FILE.TYPE);

FILE.TYPE) return FILE_MODE;
FILE_TYPE) return STRING;
FILE_TYPE) return STRING;

FILE_TYPE) return BOOLEAN;

FILE_TYPE;
out ELEMENT._TYPE);

FILE_TYPE;
ELEMENT_TYPE) ;

in FILE_TYPE) return BOOLEAN;

195

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
Impiementation Dependent Characteristics

pragma PAGE;
~- exceptions

STATUS.ERROR : exception renames IO_EXCEPTIONS.STATUS.ERROR;

MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR:
NAME _ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE.ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;

pragma PAGE;

private

type FILE_TYPE is new INTEGER;

end SEQUENTIAL.IO:;

F8.6 Package DIRECT_IO
As files are not supported, the subprograms in this package will raise USE_ERROR
STATUS_ERROR. The specification of package DIRECT_IO:

pragma PAGE;
with IO.EXCEPTIONS;

generic
type ELEMENT_TYPE is private;

package DIRECT.IO is

type FILE_TYPE is limited private;
type FILE_MODE is (IN_FILE, INOUT.FILE, OUT.FILE):

type COUNT is range 0..2_.147.483.647;
subtype POSITIVE_.COUNT is COUNT range 1..COUNT’LAST;

196

or

DACS 680x0 Bare Ada Cross Compiler System - User's Guide
Implementation Dependent Characteristics

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILE_TYPE;

MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING tm N,
FORM : in STRING = "),

procedure OPEN (FILE : in out FILE_TYPE;

. e e
o

MODE FILE_MODE;

NAME in STRING;

FORM : in STRING =),
procedure CLOSE (FILE : in out FILE_TYPE);

[N
=

procedure DELETE(FILE out FILE._TYPE)

-3

procedure RESET (FILE
MODE

in out FILE_TYPE;
FILE_MODE);

[PIVR
=]

[7S
=4

procedure RESET (FILE : out FILE_TYPE);

function MODE (FILE in FILE_TYPE) return FILE_MODE;

function NAME (FILE in FILE_TYPE) return STRING;

function FORM (FILE

in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

197

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
Implementation Dependent Characteristics

pragma PAGE;
-=- input and output operations

procedure READ (FILE : in FILE_TYPE;
ITEM : out ELEMENT.TYPE;
FROM : in POSITIVE_COUNT) ;
procedure READ (FILE : in FILE_TYPE;
ITEM : out ELEMENT.TYPE);

procedure WRITE (FILE : in FILE_TYPE;

ITEM : in ELEMENT_TYPE:

TO : in POSITIVE_COUNT) ;
procedure WRITE (FILE : in FILE_TYPE;

ITEM : in ELEMENT.TYPE):

-

procedure SET.INDEX(FILE
TO

in FILE_TYPE;
in POSITIVE.COUNT) ;

function INDEX(FILE : in FILE_TYPE) return POSITIVE.COUNT;
function SIZE (FILE : in FILE_TYPE) return COUNT:

function END.OF_FILE (FILE : in FILE_TYPE) return BOOLEAN;

pragma PAGE;

-- exceptions
STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE._ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE-ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IQ_EXCEPTIONS.DATA_ERROR;

pragma PAGE;
private

type FILE_TYPE is new INTEGER;

end DIRECT.IO;

F.9 Package CALENDAR

Package CALENDAR is as defined in [DoD-83] section 9.6, except for a new procedure
SET_TIME, which has been added to the package. SET_TIME allows setting of TIME for the
duration of the executing program. SET_.TIME parameters follow the same conventions as the
parameters for SPLIT. The specification of package CALENDAR:

198

"DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
Impiementation Dependent Characteristics

PRAGMA PAGE;
PACKAGE calendar IS

TYPE Time IS PRIVATE;

SUBTYPE Year_number IS Integer RANGE 1901..2099;
SUBTYPE Month_number IS Integer RANGE 1..12;

SUBTYPE Day._number IS Integer RANGE 1..31;

SUBTYPE Day.duration IS Duration RANGE 0.0..86-400.0;

FUNCTION clock RETURN Time;

FUNCTION year(date: Time) RETURN Year_number;
FUNCTION month(date: Time) RETURN Month_number:
FUNCTION day (date: Time) RETURN Day_number;
FUNCTION seconds(date: Time) RETURN Day.duration;

PROCEDURE split (date: IN Time;
year: OUT Year_number;
month: OUT Month_number;
day: OUT Day_number;
seconds: OUT Day_duration);

FUNCTION time_of (year: Year_number;
month: Month_number;
day: Day_number;
seconds: Day._duration := 0.0) RETURN Time;

FUNCTION "+" (left: Time;

right: Duration) RETURN Time;
FUNCTION "+" (left: Duration;

right: Time) RETURN Time;
FUNCTION "-" (left: Time:

right: Duration) RETURN Time;
FUNCTION "-" (left: Time;

right: Time) RETURN Duration;

FUNCTION "<" (left,right: Time) RETURN Boolean;
FUNCTION "<=" (left,right: Time) RETURN Boolean;
FUNCTION ">" (left,right: Time) RETURN Boolean;
FUNCTION ">=" (left,right: Time) RETURN Boolean;

PROCEDURE set_time (year : IN Year_number;
month : IN Month.number;
day : IN Day_number;

seconds : IN Day.duration);

TIME_ERROR: Exception; -~ ...can be raised by

-= time_of , "+" and "“-" .
1 PRIVATE
f END calendar;
!
i
: 199

b -

DACS 680x0 Bare Ada Cross Compiler System - User’s Guide
Implementation Dependent Characteristics

F.10 Machine Code Insertions

Machine code insertions are allowed using the instructions defined in package MACHINE_CODE.
All arguments given in the code statement aggregate must be static.

The machine language defined in package MACHINE_CODE is not 680x0 assembler, but rather
Abstract A-code which is an intermediate language used by the compiler.

200

